首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The renal secretion of carbenicillin (CBPC) was studied in rats. The results obtained in the in vivo study indicated very poor renal secretion of CBPC in rats, which was entirely different from those observed in humans and rabbits. In humans and rabbits, significant and stereoselective renal secretion of CBPC was observed in vivo. In order to verify the poor renal secretion of CBPC in rats, the transport characteristics of the organic anion transporters were studied in vitro using basolateral and brush border membrane vesicles. Transport of p-aminohippuric acid (PAH) into the basolateral membrane vesicles (BLMVs) was inhibited by CBPC, indicating that the organic anion transporter located at the BLM may have affinity to CBPC. In contrast, the transport of PAH into the brush border membrane vesicles (BBMVs) was not inhibited by CBPC, suggesting that the organic anion transporter located at the BBM may not have affinity to CBPC. Similar results were obtained for sulbenicillin (SBPC). Since CBPC and SBPC exist as di-anions at physiological pH, the organic anion transporter located at the rat renal BBM may not exhibit affinity to water-soluble di-anions, which in turn will result in poor renal secretion of these compounds.  相似文献   

2.
3.
Intestinal absorption and renal tubular secretion are transport processes determining the availability and the disposition of drugs in the body. In this review, our studies on the molecular and cell biological analyses of intestinal absorption and renal secretion of drugs are described. We evaluated the transepithelial transport and the cellular accumulation of peptide-like drugs such as beta-lactam antibiotics and bestatin (a dipeptide-like antineoplastic agent) in the human adenocarcinoma colon cell line, Caco-2, as an in vitro model for studying absorption mechanisms of these drugs. We have found that the transcellular transport of these peptide-like drugs is mediated by both the apically- and basolaterally-localized peptide transporters. To characterize molecular aspects of absorption of the peptide-like drugs, we studied cDNA cloning of H+/peptide cotransporters, PEPT1 and PEPT2, expressed in rats. The rat PEPT1 has been shown to mediate the H- coupled uphill transport of beta-lactam antibiotics across the brush-border membranes of the intestinal and renal epithelia. The rat PEPT2 is expressed predominantly in the kidney, but not in the intestine, mediating tubular reabsorption of the peptide-like drugs. We examined the transcellular transport of organic cations across monolayers of the kidney epithelial cell line, LLC-PK1. We have found that LLC-PK1 cells possess the H+/organic cation antiporter and the membrane potential-sensitive organic cation transporter in the apical and basolateral membranes, respectively, thereby tetraethylammonium (TEA) being transported unidirectionally from the basolateral to the apical side of the monolayers. We have isolated a cDNA encoding a rat kidney-specific organic cation transporter, OCT 2, which transports TEA in a H(+)-gradient independent manner, suggesting that OCT2 is localized to the basolateral membranes of renal tubular cells. In addition, a cDNA encoding a novel rat organic anion transporter, OAT-K1, has been cloned. OAT-K1 is expressed exclusively in the renal proximal tubules, and mediates the transport of methotrexate. Analyses of the molecular and cell biological mechanisms for drug absorption and secretion will provide information for the understanding of organ specific drug transport systems and for the development of drug design and/or drug delivery system.  相似文献   

4.
We have isolated a kidney-specific organic cation transporter, rat OCT2, which is distinct from rat OCT1 (Okuda M, Saito H, Urakami Y, Takano M and Inui K (1996) Biochem Biophys Res Commun 224:500-507). In our study, the functional characteristics and membrane localization of OCT1 and OCT2 were investigated by uptake studies using MDCK cells transfected with rat OCT1 or OCT2 cDNA (MDCK-OCT1 or MDCK-OCT2) and immunological studies. Tetraethylammonium (TEA) uptake by both MDCK-OCT1 and MDCK-OCT2 cells was markedly elevated when TEA was added to the basolateral medium, but not to the apical medium. Efflux of TEA from MDCK-OCT1 and MDCK-OCT2 cells was not changed by extracellular pH from 5.4 to 8.4, whereas TEA uptake by both transfectants was decreased by acidification of extracellular medium. Apparent Km values for TEA uptake by MDCK-OCT1 and MDCK-OCT2 cells were 38 and 45 microM, respectively. Although various hydrophilic organic cations such as 1-methyl-4-phenylpyridinium, cimetidine, quinidine, nicotine, N1-methylnicotinamide and guanidine markedly inhibited TEA uptake by both MDCK-OCT1 and MDCK-OCT2 cells, there were no significant differences in the apparent inhibition constants (Ki) against these organic cations between both transfectants. Furthermore, immunological studies using a polyclonal antibody against OCT1 revealed that OCT1 was expressed in the basolateral membranes but not in the brush-border membranes of the rat kidney. These results suggested that both OCT1 and OCT2 are basolateral-type organic cation transporters with broad substrate specificities, mediating tubular secretion of cationic drugs.  相似文献   

5.
Cationic drugs of different types and structures (antihistaminics, antiarrhythmics, sedatives, opiates, cytostatics and antibiotics, for example) are excreted in mammals by epithelial cells of the renal proximal tubules and by hepatocytes in the liver. In the proximal tubules, two functionally disparate transport systems are involved which are localized in the basolateral and luminal plasma membrane and are different from the previously identified neuronal monoamine transporters and ATP-dependent multidrug exporting proteins. Here we report the isolation of a complementary DNA from rat kidney that encodes a 556-amino-acid membrane protein, OCT1, which has the functional characteristics of organic cation uptake over the basolateral membrane of renal proximal tubules and of organic cation uptake into hepatocytes. OCT1 is not homologous to any other known protein and is found in kidney, liver and intestine. As OCT1 translocates hydrophobic and hydrophilic organic cations of different structures, it is considered to be a new prototype of polyspecific transporters that are important for drug elimination.  相似文献   

6.
Previously we cloned a polyspecific transporter from rat (rOCT1) that is expressed in renal proximal tubules and hepatocytes and mediates electrogenic uptake of organic cations with different molecular structures. Recently a homologous transporter from rat kidney (rOCT2) was cloned but not characterized in detail. We report cloning and characterization of two homologous transporters from man (hOCT1 and hOCT2) displaying approximately 80% amino acid identity to rOCT1 and rOCT2, respectively. Northern blots showed that hOCT1 is mainly transcribed in liver, while hOCT2 is found in kidney. Using in situ hybridization and immunohistochemistry, expression of hOCT2 was mainly detected in the distal tubule where the transporter is localized at the luminal membrane. After expression in Xenopus laevis oocytes, hOCT1 and hOCT2 mediate tracer influx of N-1-methylnicotinamide (NMN), tetraethylammonium (TEA), and 1-methyl-4-phenylpyridinium (MPP). For cation transport by hOCT2 apparent K(m) and K(i) values were determined in tracer flux measurements. In addition, electrical measurements were performed with voltage-clamped oocytes. Similar to rOCT1, cation transport by hOCT2 was pH independent, electrogenic, and polyspecific; however, the cation specificity was different. In voltage-clamped hOCT2-expressing oocytes, inward currents were induced by superfusion with MPP, TEA, choline, quinine, d-tubocurarine, pancuronium, and cyanine863. Cation transport in distal tubules is indicated for the first time. Here hOCT2 mediates the first step in cation reabsorption. hOCT1 may participate in hepatic excretion of organic cations.  相似文献   

7.
The cDNA coding for a rabbit renal Na+/dicarboxylate cotransporter, designated NaDC-1, was isolated by functional expression in Xenopus oocytes. NaDC-1 cDNA is approximately 2.3 kilobases in length and codes for a protein of 593 amino acids. NaDC-1 protein contains eight putative transmembrane domains, and the sequence and secondary structure are related to the renal Na+/sulfate transporter, NaSi-1. Northern analysis shows that the NaDC-1 message is abundant in kidney and small intestine, and related transporters may be found in liver, lung, and adrenal. The transport of succinate by NaDC-1 was sodium-dependent, sensitive to inhibition by lithium, and inhibited by a range of di- and tricarboxylic acids. This transporter also carries citrate, but it does not transport lactate. In kinetic experiments, the Km for succinate was around 0.4 mM and the Vmax was 15 nmol/oocyte/h, while the Hill coefficient of Na+ activation of succinate transport was 1.9. The transport of succinate by NaDC-1 was insensitive to changes in pH, whereas the transport of citrate increased with decreasing pH, in parallel with the concentration of divalent citrate in the medium. The results of the functional characterization indicate that NaDC-1 likely corresponds to the renal brush-border Na+/dicarboxylate cotransporter.  相似文献   

8.
The transport of the nephrotoxic mycotoxin ochratoxin A across the renal peritubular membrane was examined in suspensions of rabbit renal proximal tubules. Ochratoxin A transport across the peritubular membrane was a high-affinity, low-capacity carrier-mediated process with a Jmax value of 0.12 +/- 0.4 nmol/mg of protein/min and a Km value of 1.4 +/- 0.1 microM. The apparent Michaelis constants for inhibition of [3H]para-aminohippurate (PAH) uptake by ochratoxin A inhibition was 1.5 microM, which is similar to the Km value for ochratoxin A uptake in tubule suspensions and suggests that ochratoxin A could be a substrate for the organic anion pathway. The capacity and affinity for peritubular ochratoxin A transport were 40-fold lower and > 100-fold greater, respectively, than those measured for the peritubular uptake of [3H]PAH in tubule suspensions. A concentration of 2.5 mM PAH, which reduced the uptake of [3H]PAH by 90%, reduced ochratoxin A uptake by only 40% to 50%, whereas probenecid concentrations of 0.6 to 2 mM reduced ochratoxin A accumulation in tubule suspensions up to approximately 80% to 90%. This probenecid-sensitive, PAH-insensitive uptake of ochratoxin A suggested that at least one mediated pathway other than the organic anion transporter was involved in the peritubular uptake of this mycotoxin. A 2 mM concentration of the fatty acid octanoate and 1.5 mM concentration of the nonsteroidal anti-inflammatory agent piroxicam were as effective as probenecid in blocking ochratoxin A uptake. The apparent Ki values for inhibition of ochratoxin A uptake by probenecid, piroxicam and octanoate were 30.5 +/- 7.9, 23.2 +/- 10.4 and 81.5 +/- 8.7 microM, respectively. The ability of octanoic acid to inhibit ochratoxin A transport to the same extent as probenecid and a greater extent than PAH suggests that a separate fatty acid transport pathway may be involved in the accumulation of ochratoxin A by suspensions of rabbit renal proximal tubules.  相似文献   

9.
The kidney's responsiveness to male sexual hormones has been often neglected. Renal secretion of organic anions is higher in male than in female individuals; as a consequence, most of the xenobiotics that are excreted from the organism through this pathway are eliminated more rapidly by males than by female animals. To gain further insight into this issue, we studied in vitro and in vivo characteristics of the transport of p-aminohippurate (PAH), a suitable marker for this system, in male and female rats, under different hormonal conditions. Kinetics of PAH showed a shorter elimination half-time in male than in female rats (t(1/2el): male = 16.2 +/- 2.1 min, female = 25.7 +/- 4.5 min, P < 0.05). Castration of male rats increased t(1/2el) to a value similar to that of female rats (t(1/2el): orchiectomized rat = 28.1 +/- 7.1 min). Testosterone treatment of female rats increased the elimination rate to a value similar to that of male rats. In vitro PAH uptake by renal cortical slices from intact male rats was higher than that by slices from orchiectomized rats. Kinetic analyses of PAH uptake suggest that the difference was caused by a lower number of transporting molecules in orchiectomized than in intact animals, whereas the transporting capacity for each carrier was similar in male and in orchiectomized rats. Our results suggest that testosterone increases the number of functional carriers for PAH in the kidney.  相似文献   

10.
Epifluorescence microscopy was used to study peritubular transport of the fluorescent mycotoxin ochratoxin A (OTA) into single proximal tubule segments of the rabbit. Initial rates of OTA uptake into S2 segments were saturable and adequately described by Michaelis-Menten kinetics, with an apparent Km of 2.2+/-0.3 microM (SEM). Several lines of evidence indicated that peritubular uptake of OTA in S2 segments was effectively limited to the "classical" organic anion transporter. First, 5 mM p-aminohippurate (PAH) cis-inhibited the uptake of 1 microM OTA into tubules by 96%. Kinetic analysis of the inhibition of OTA uptake by PAH (100 microM to 5 mM) yielded an apparent Ki of 164 microM, similar to the 100 to 200 microM range of Km values previously reported for the peritubular uptake of PAH. Second, efflux of OTA from tubules was trans-stimulated 3.2-fold by the presence of 2.5 mM PAH in the uptake medium. Third, 100 microM alpha-ketoglutarate (alphaKG) trans-stimulated the uptake rate of 1 microM OTA by 1.8-fold. Fourth, besides PAH, other organic anions effectively cis-inhibited the uptake of 1 microM OTA into tubules (inhibitor, % inhibition): 1.5 mM alphaKG, 80%; 1 mM probenecid, 100%; 1 mM piroxicam, 100%; 1 mM octanoate, 100%. In contrast, 1.5 mM tetraethylammonium, an organic cation, blocked uptake of 1 microM OTA by only 7%. The inhibition of OTA uptake into S1 and S3 segments of the proximal tubule was qualitatively similar: 5 mM PAH cis-inhibited the uptake of 1 microM OTA by approximately 95% in both S1 and S3 segments. Thus, peritubular OTA uptake into all segments of the proximal tubule appears to be dominated by its interaction with the classical organic anion transporter. The high-affinity and relatively high capacity of this pathway for OTA suggest that peritubular uptake may be a significant avenue for the entry of this toxin into proximal tubule cells.  相似文献   

11.
The mechanism of uptake of p-aminohippurate (PAH) by syncytial microvillous membrane vesicles of human term placenta was investigated. Initial PAH uptake and efflux were increased in the presence of a pH-gradient and a Cl(-)-gradient, respectively. Forced negative and positive membrane potentials did not influence the uptake, which indicated that the transport is not electrogenic. The pH-dependent increase is probably the result of a higher rate of diffusion due to a lower degree of dissociation of PAH. Because several organic anions failed to transstimulate PAH uptake and FCCP did not decrease the uptake in the presence of an inwardly directed H(+)-gradient, ruling out a PAH/OH- antiport, an anion exchange system does not appear to be present in these membranes. Since electrogenicity and anion exchange seem not to be involved in the Cl(-)-dependent increase, an allosteric effect of Cl- on the transporter might be possible. Various organic anions were able to inhibit pH-stimulated PAH uptake significantly. Kinetic analysis of the probenecid sensitive part of uptake provided further evidence for mediated transport of PAH (Km = 7.4 +/- 2.6 mM and Vmax = 2.0 +/- 0.4 nmol/mg/15 s). Non-inhibitable diffusion accounted for the main part of total transport. Concentration dependent inhibition of PAH transport by probenecid showed a Ki of 2.5 +/- 0.9 mM. It is concluded that human placental syncytial microvillous membrane vesicles possess a low affinity transport mechanism for PAH with low specificity. The importance of this system, for placental excretion of anionic drugs, will depend on the intrasyncytial concentration of these drugs, caused by the transport across the basal membrane.  相似文献   

12.
Organic anion transporters play an essential role in eliminating a wide range of organic anions including endogenous compounds, xenobiotics, and their metabolites from kidney, thereby preventing their potentially toxic effects within the body. The goal of this study was to extend our previous study on the functional characterization and post-translational modification of a mouse kidney organic anion transporter (mOAT), in a mammalian cell system, COS-7 cells. The transporter-mediated p-aminohippurate (PAH) uptake was saturable, probenecid-sensitive, and inhibited by a wide range of organic anions including vitamins, anti-hypertensive drugs, anti-tumor drugs, and anti-inflammatory drugs. Tunicamycin, an inhibitor of asparagine-linked glycosylation, significantly inhibited the transport activity. Immunofluorescence provided evidence that most of the protein remained in the intracellular compartment in tunicamycin-treated cells. Diethyl pyrocarbonate (DEPC), a histidine residue-specific reagent, completely blocked PAH transport. The inhibitory effect by DEPC was significantly protected (90%) by pretreating the cells with excess unlabeled PAH, suggesting that the histidine residues may be close to the PAH binding sites. Finally, in situ mRNA localization was studied in postnatal mouse kidney. The expression was observed in proximal tubules throughout development. We conclude that COS-7 cells may be useful in pharmacological and molecular biological studies of this carrier. The carbohydrate moieties are necessary for the proper trafficking of mOAT to the plasma membrane, and histidine residues appear to be important for the transport function.  相似文献   

13.
The previously cloned rat cation transporter rOCT1 detected in renal proximal tubules and hepatocytes (Gründemann, D., Gorboulev, V., Gambaryan, S., Veyhl, M., and Koepsell, H. (1994) Nature 372, 549-552) was expressed in Xenopus oocytes, and transport properties were analyzed using tracer uptake studies and electrophysiological measurements. rOCT1 induced highly active transport of a variety of cations, including the classical substrates for cation transport, such as N-1-methylnicotinamide, 1-methyl-4-phenylpyridinium (MPP), and tetraethylammonium (TEA), but also the physiologically important choline. In oocytes rOCT1 also mediated efflux of MPP, which could be trans-stimulated by MPP and TEA. Cation transport via rOCT1 was electrogenic. In voltage-clamped oocytes, transport of TEA and choline via rOCT1 produced inwardly directed currents, which were independent of extracellular ion composition or pH. The choline- and TEA-induced currents were voltage-dependent at nonsaturating concentrations, and the apparent affinity of these cations was decreased at depolarized voltages. Other substrates transported by rOCT1 were the polyamines spermine and spermidine. Interestingly, the previously described potent inhibitors of rOCT1, cyanine 863, quinine, and D-tubocurarine were substrates themselves. The data indicate that rOCT1 is an effective transport system that is responsible for electrogenic uptake of a wide variety of organic cations into epithelial cells of renal proximal tubules and hepatocytes.  相似文献   

14.
The furan dicarboxylic acid, 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid (5-propyl FPA), accumulates in uremic plasma and inhibits the binding of various drugs and marker ligands that are organic acids. 5-Propyl FPA is excreted unchanged in human urine and active tubular secretion is likely to be involved because of its high affinity for albumin. The uptake of 5-propyl FPA by rat kidney slices has been measured and compared with that of p-aminohippurate (PAH). The mean (+/- S.D.) slice/medium ratio for uptake of 5-propyl FPA (76 microM) was 22.7 +/- 2.6 (n = 11) and for PAH (75 microM) was 15.9 +/- 3.2 (n = 9) after incubation for 90 min at 25 degrees C. 5-Propyl FPA (149-829 microM) inhibited the uptake of PAH (77 microM) in a concentration-dependent manner, and likewise, PAH (150-830 microM) inhibited the uptake of 5-propyl FPA (77 microM). The mean apparent Km and Vmax values for the uptake of 5-propyl FPA were 194 +/- 125 microM and 55 +/- 28 nmol/g kidney/min, respectively, and 487 +/- 179 and 99 +/- 46 nmol/g kidney/min, respectively, for PAH. The kinetics of inhibition of uptake of PAH by 5-propyl FPA were mainly competitive. 5-Propyl FPA is thus likely to undergo active tubular secretion in a similar way to PAH, and this furan dicarboxylic acid, therefore, has the potential to inhibit the renal excretion of various drugs, drug conjugates and other endogenous organic acids.  相似文献   

15.
The recently cloned apical renal transport system for organic cations (OCT2) exists in dopamine-rich tissues such as kidney and some brain areas (Gründemann, D., Babin-Ebell, J., Martel, F., Ording, N., Schmidt, A., and Sch?mig, E. (1997) J. Biol. Chem. 272, 10408-10413). The study at hand was performed to answer the question of whether OCT2 accepts dopamine and other monoamine transmitters as substrate. 293 cells were stably transfected with the OCT2r cDNA resulting in the 293OCT2r cell line. Expression of OCT2r in 293 cells induces specific transport of tritiated dopamine, noradrenaline, adrenaline, and 5-hydroxytryptamine (5-HT). Initial rates of specific 3H-dopamine, 3H-noradrenaline, 3H-adrenaline, and 3H-5-HT transport were saturable, the Km values being 2.1, 4.4, 1.9, and 3.6 mmol/liter. The corresponding Vmax values were 3.9, 1.0, 0. 59, and 2.5 nmol min-1.mg of protein-1, respectively. 1, 1'-diisopropyl-2,4'-cyanine (disprocynium24), a known inhibitor of OCT2 with a potent eukaliuric diuretic activity, inhibited 3H-dopamine uptake into 293OCT2r cells with an Ki of 5.1 (2.6, 9.9) nmol/liter. In situ hybridization reveals that, within the kidney, the OCT2r mRNA is restricted to the outer medulla and deep portions of the medullary rays indicating selective expression in the S3 segment of the proximal tubule. These findings open the possibility that OCT2r plays a role in renal dopamine handling.  相似文献   

16.
The interaction of the organic anion, fluorescein (FL), with mitochondria in renal proximal tubule cells was investigated. Confocal microscopy was used to demonstrate FL accumulation in mitochondria of intact cells. Phenylsuccinate inhibited the mitochondrial accumulation of the FL analog, carboxyfluorescein (CF) indicating that the dicarboxylate carrier may be involved in the intracellular compartmentation of organic anions. To characterize the interaction, radio-tracer uptake and respiration studies with renal mitochondria were carried out using succinate as a substrate. Respiration measurements in freshly isolated kidney cortex mitochondria revealed that FL inhibited ADP-stimulated and uncoupled respiratory rate, indicating that the organic anion inhibited the availability of succinate as a reducing agent. A similar effect on mitochondrial respiration was found for PAH and phenylsuccinate. FL inhibited 14C-succinate uptake concentration-dependently, and Dixon analysis revealed that the nature of interaction between FL and succinate was competitive, Ki values of 0.5 +/- 0.2 and 1.1 +/- 0.8 mM were calculated for respiration experiments and tracer uptake studies, respectively. The data demonstrate that FL competitively interacts with a mitochondrial dicarboxylate transporter.  相似文献   

17.
The organic anions, p-aminohippurate (PAH) and fluorescein, are transported across the basolateral membrane of the renal proximal tubule in exchange for intracellular alpha-ketoglutarate (alpha KG), a mechanism indirectly coupled to sodium via Na+/alpha KG cotransport. To determine whether this mechanism mediates the basolateral transport of other organic anions, transport of the herbicide, 2,4-dichlorophenoxyacetic acid (2,4-D), was examined in rat renal cortical slices and basolateral membrane vesicles. In slices, uptake of 2,4-D increased steadily over time, approaching steady-state tissue/medium ratios of approximately 8 after 60 min. Probenecid, PAH and chlorophenol red inhibited steady-state uptake of 2,4-D. Accumulation of 10 microM 2,4-D was stimulated 2-fold by 60 microM glutarate; other dicarboxylic acids failed to stimulate uptake. In the presence of sodium, the addition of 5 mM LiCl or 2 mM ouabain to the bathing medium abolished glutarate stimulation. Removal of sodium from the bathing medium reversibly inhibited uptake as much as 75%. Furthermore, PAH inhibited 2,4-D uptake by slices in a dose-dependent manner, and increasing the external 2,4-D concentration decreased the inhibitory potency of PAH. In basolateral membrane vesicles, unlabeled 2,4-D inhibited sodium glutarate-coupled uptake of 3H-labeled PAH and 2,4-D in a concentration-dependent manner. Moreover, concentrative uptake of 2,4-D into vesicles could be driven by an outwardly directed gradient of glutarate or alpha KG that was generated by lithium-sensitive Na+/dicarboxylate cotransport or imposed experimentally. An outwardly directed gradient of unlabeled 2,4-D or PAH also stimulated uptake of 2,4-D. Based on these data, basolateral accumulation of 2,4-D by the renal proximal tubule is mediated by 2,4-D/alpha KG exchange, a mechanism energetically coupled to Na+/alpha KG cotransport and shared with PAH.  相似文献   

18.
Bicarbonate transporters are the principal regulators of pH in animal cells, and play a vital role in acid-base movement in the stomach, pancreas, intestine, kidney, reproductive system and central nervous system. The functional family of HCO3- transporters includes Cl- -HCO3- exchangers, three Na+/HCO3- cotransporters, a K+/HCO3- cotransporter, and a Na+-driven Cl- -HCO3- exchanger. Molecular information is sparse on HCO3- transporters, apart from Cl- -HCO3- exchangers ('anion exchangers'), whose complementary DNAs were cloned several years ago. Attempts to clone other HCO3- transporters, based on binding of inhibitors, protein purification or homology with anion exchangers, have so far been unsuccessful. Here we monitor the intracellular pH and membrane voltage in Xenopus oocytes to follow the expression of the most electrogenic transporter known: the renal 1:3 electrogenic Na+/HCO3- cotransporter from the salamander Ambystoma tigrinum. We now report the successful cloning and characterization of a cDNA encoding a cation-coupled HCO3- transporter. The encoded protein is 1,035 amino acids long with several potential membrane-spanning domains. We show that when it is expressed in Xenopus oocytes, this protein is electrogenic, Na+ and HCO3- dependent, and blocked by the anion-transport inhibitor DIDS, and conclude that it is the renal electrogenic sodium bicarbonate cotransporter (NBC).  相似文献   

19.
Heavy metal intoxication leads to defects in cellular uptake mechanisms in the mammalian liver and kidney. We have studied the effects of several heavy metals, including mercury, lead, cadmium, and chromium (at concentrations of 1 to 1000 microM), on the activity of the mammalian sulfate transporter sat-1(2) in Xenopus oocytes. sat-1 encodes a sulfate/bicarbonate anion exchanger expressed in the rat liver and kidney. Mercury (10 microM) strongly inhibited sat-1 transport by reducing Vmax by eightfold but not its Km for inorganic sulfate (Si). Lead (up to 1 mM) was unable to significantly inhibit sat-1 transporter activity. Cadmium (500 microM) showed weak inhibition of sat-1 transport by decreasing only sat-1 Vmax. Chromium (100 microM) strongly inhibited sat-1 transport by reducing Km for Si by sevenfold, most probably by binding to the Si site, due to the strong structural similarity between the CrO2-4 and SO2-4 substrates. This study presents the first characterization of heavy metal inhibition of the hepatic and renal sulfate/bicarbonate transporter sat-1, through various mechanisms, which may lead to sulfaturia following heavy metal intoxication.  相似文献   

20.
The parasitic protozoan Leishmania enriettii contains a family of tandemly repeated genes, designated Pro-1, that encode proteins with significant sequence similarity to mammalian facilitative glucose transporters. Pro-1 mRNAs are expressed almost exclusively in the promastigote or insect stage of the parasite life cycle. The Pro-1 tandem repeat encodes two isoforms of the putative transporter, iso-1 and iso-2, which have identical predicted amino acid sequences except for their NH2-terminal hydrophilic domains. We have now expressed both iso-1 and iso-2 by microinjecting their RNAs into Xenopus oocytes and assaying these oocytes for transport of various radiolabeled ligands. Both iso-1 and iso-2 transport [3H]2-deoxy-D-glucose, confirming that each protein is a bona fide glucose transporter. Each isoform also transports fructose and, to a much lesser degree, mannose. Compounds which inhibit 2-deoxy-D-glucose transport in L. enriettii promastigotes also inhibit transport in the microinjected oocytes expressing each isoform, indicating that the substrate specificities and pharmacological properties of each isoform are similar to those measured for 2-deoxy-D-glucose transport in intact parasites. The Km for transport of 2-deoxyglucose in oocytes expressing iso-1 is similar to that for oocytes expressing iso-2. These results reveal that both transporter isoforms have closely related functional properties and that the difference in their structures may serve some other purpose such as differential subcellular localization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号