首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper proposes a junctionless tunnel field effect transistor (JLTFET) with dual material gate (DMG) structure and the performance was studied on the basis of energy band profile modulation. The two-dimensional simulation was carried out to show the effect of conduction band minima on the abruptness of transition between the ON and OFF states, which results in low subthreshold slope (SS). Appropriate selection of work function for source and drain side gate metal of a double metal gate JLTFET can also significantly reduce the subthreshold slope (SS), OFF state leakage and hence gives improved I ON/I OFF.  相似文献   

2.
3.
The impact of spacer dielectric on both sides of gate oxide on the device performance of a symmetric double-gate junctionless transistor (DGJLT) is reported for the first time. The digital and analog performance parameters of the device considered in this study are drain current (I D ), ON-state to OFF-state current ratio (I ON /I OFF ), subthreshold slope (SS), drain induced barrier lowering (DIBL), intrinsic gain (G m R O ), output conductance (G D ), transconductance/drain current ratio (G m /I D ) and unity gain cut-off frequency (f T ). The effects of varying the spacer dielectric constant (k sp ) on the electrical characteristics of the device are studied. It is observed that the use of a high-k dielectric as a spacer brings an improvement in the OFF-state current by more than one order of magnitude thereby making the device more scalable. However, the ON-state current is only marginally affected by increasing dielectric constant of spacer. The effects of spacer width (W sp ) on device performance are also studied. ON-state current marginally decreases with spacer width.  相似文献   

4.
5.

In this paper, we propose an n-type double gate junctionless field-effect-transistor using recessed silicon channel. The recessed silicon channel reduces the channel thickness between the underlap regions, results in lowering the number of charge carriers in the silicon channel, and therefore, diminishing the OFF-current in the device. The proposed device shows similar electrical characteristics with improved transconductance, as compared to the conventional double gate junctionless field-effect-transistor. The effect of channel length scaling on the performance have been investigated, and it has been found that the recessed junctionless device shows higher ON-to-OFF current ratio, lower subthreshold swing and better immunity against the short channel effects, namely threshold voltage roll-off and drain-induced-barrier-lowering. For a channel length of 20 nm the OFF-current of the order of 1.20?×?10–14 A/µm, ON-to-OFF current ratio of the order of 6.01?×?1010, subthreshold swing of the value of 67 mV/dec, and DIBL of 37.8 mV V?1 has been achieved with the proposed junctionless device, in comparison of conventional double gate junctionless FET. The performance of proposed device with respect to the variations in depth and length of recessed silicon area, has also been presented as a roadmap for further tuning of its electrical behaviour. Comparatively, steeper DC transfer characteristics and improved rail-to-rail swing in transient behaviour has been reported with the designed complementary metal–oxide–semiconductor inverter, based on recessed double gate junctionless FET. The proposed recessed silicon channel double gate junctionless field-effect-transistor has been simulated using TCAD tool.

  相似文献   

6.
7.
8.
The objective of this work is to analyze the radiation performance of the planar junctionless devices and junctionless device-based SRAMs. Bulk planar junctionless transistor (BPJLT) and silicon-on-insulator planar junctionless transistors (SOIPJLT) under heavy ions irradiation have been studied using TCAD simulations. 6T-SRAM cells built up of BPJLTs and SOIPJLTs have been investigated for their soft error performance. Even though the bipolar amplification of the SOIPJLT is more compared to BPJLT, the soft error performance of the SOIPJLT SRAM is better compared to BPJLT SRAM.  相似文献   

9.
The ongoing trend of device dimension miniaturization is attributed to a large extent by the development of several non-conventional device structures among which tunneling field effect transistors (TFETs) have attracted significant research attention due to its inherent characteristics of carrier conduction by built-in tunneling mechanism which in turn mitigates various short channel effects (SCEs). In this work, we have, incorporated the innovative concept of work function engineering by continuously varying the mole fraction in a binary metal alloy gate electrode along the horizontal direction into a double gate tunneling field effect transistor (DG TFET), thereby presenting a new device structure, a work function engineered double gate tunneling field effect transistor (WFEDG TFET). We have presented an explicit analytical surface potential modeling of the proposed WFEDG TFET by the solving the 2-D Poisson’s equation. From the surface potential expression, the electric field has been derived which has been utilized to formulate the expression of drain current by performing rigorous integration on the band-to-band tunneling generation rate over the tunneling region. Based on this analytical modeling, an overall performance comparison of our proposed WFEDG TFET with its normal DG TFET counterpart has been presented in this work to establish the superiority of our proposed structure in terms of surface potential and drain current characteristics. Analytical results have been compared with SILVACO ATLAS device simulator results to validate our present model.  相似文献   

10.
Gate dielectric materials play a key role in device development and study for various applications. We illustrate herein the impact of hetero (high-k/low-k) gate dielectric materials on the ON-current (\(I_{\mathrm{ON}}\)) and OFF-current (\(I_{\mathrm{OFF}}\)) of the heterogate junctionless tunnel field-effect transistor (FET). The heterogate concept enables a wide range of gate materials for device study. This concept is derived from the well-known continuity of the displacement vector at the interface between low- and high-k gate dielectric materials. Application of high-k gate dielectric material improves the internal electric field in the device, resulting in lower tunneling width with high \(I_{\mathrm{ON}}\) and low \(I_{\mathrm{OFF}}\) current. The impact of work function variations and doping on device performance is also comprehensively investigated.  相似文献   

11.
we demonstrate the design of a triple gate n-channel junctionless transistor that we call a junctionless tunnel field effect transistor (JLTFET). The JLTFET is a heavily doped junctionless transistor which uses the concept of tunneling, by narrowing the barrier between source and channel of the device, to turn the device ON and OFF. Simulation shows significant improvement compared to simple junctionless field effect transistor both in I ON/I OFF ratio and subthreshold slope. Here, junctionless tunnel field effect transistors with high-k dielectric and low-k spacers are demonstrated through simulation and shows an ON-current of 0.25 mA/μm for the gate voltage of 2 V and an OFF current of 3 pA/μm (neglecting gate leakage). In addition, our device shows optimized performance with high I ON/I OFF (~109). Moreover, a subthreshold slope of 47 mV/decade is obtained for a 50 nm gate length of simulated JLTFET at room temperature which indicates that JLTFET is a promising candidate for switching performance.  相似文献   

12.
13.
In this work we investigate quantum ballistic transport in ultrasmall junctionless and inversion mode semiconducting nanowire transistors within the framework of the self-consistent Schrödinger-Poisson problem. The quantum transmitting boundary method is used to generate open boundary conditions between the active region and the electron reservoirs. We adopt a subband decomposition approach to make the problem numerically tractable and make a comparison of four different numerical approaches to solve the self-consistent Schrödinger-Poisson problem. Finally we discuss the IV-characteristics for small (r≤5 nm) GaAs nanowire transistors. The novel junctionless pinch-off FET or junctionless nanowire transistor is extensively compared with the gate-all-around (GAA) nanowire MOSFET.  相似文献   

14.
In this paper, we report the TCAD based simulation of a new double-gate junctionless FETs (DG-JLFETs) structure incorporating dielectric pockets (DPs) at the source and drain ends. The proposed structure not only improves the ON to OFF drain current ratio (by \({\sim }\)900 %), subthreshold swing characteristics (by \({\sim }\)12 %) and Drain Induced Barrier Lowering (DIBL) (by \({\sim }\)56 %) over the conventional DG-JLFETs (i.e. without DPs), but also provides additional flexibility of performance optimization of the device by changing the length and thickness of the DPs. Since only little work has been carried out on the performance optimization of the JLFETs, the present work is believed to be very useful for designing the low-power VLSI circuits using DP-DG JLFETs with improved performance.  相似文献   

15.
In this paper, we have proposed a device and named it dual electrode doping-less TFET (DEDLTFET), in which electrodes on top and bottom of source and drain are considered to enhance the ON state current and Analog performances. The charge plasma technique is used to generate electron’s and hole’s clouding depending upon their respective work functions at top and bottom of source/drain electrode. Band-to-band-tunneling rate is similar on both sides of source-channel junctions, which increases ON state current. The analog performance parameters of DEDLTFET are investigated and using device simulation the demonstrated characteristics are compared with doping-less (DLTFET) and the conventional doped double gate TFET (DGTFET), such as transconductance \((\hbox {g}_\mathrm{m})\), transconductance to drain current ratio \((\hbox {g}_\mathrm{m}/\hbox {I}_\mathrm{D})\), output-conductance (g\(_{d})\), output resistance \((\hbox {r}_\mathrm{d})\), early voltage \((\hbox {V}_\mathrm{EA})\), intrinsic gain \((\hbox {A}_\mathrm{V})\), total gate capacitance \((\hbox {C}_\mathrm{gg})\) and unity gain frequency \((\hbox {f}_\mathrm{T})\). From the simulation results, it is observed that DEDLTFET has significantly improved analog performance as compared to DGTFET and DLTFET.  相似文献   

16.
Junctionless transistors, which do not have any pn junction in the source-channel-drain path have become an attractive candidate in sub-20 nm regime. They have homogeneous and uniform doping in source-channel-drain region. Despite some similarities with conventional MOSFETs, the charge-potential relationship is quite different in a junctionless transistor, due to its different operational principle. In this report, models for potential and drain current are formulated for shorter channel symmetric double-gate junctionless transistor (DGJLT). The potential model is derived from two dimensional Poisson’s equation using “variable separation technique”. The developed model captures the physics in all regions of device operation i.e., depletion to accumulation region without any fitting parameter. The model is valid for a range of channel doping concentrations, channel thickness and channel length. Threshold voltage and drain-induced barrier lowering values are extracted from the potential model. The model is in good agreement with professional TCAD simulation results.  相似文献   

17.
18.
19.
Device design of the insulated gate bipolar transistor (IGBT) has been optimized to reduce the distributed transmission-line effect. In addition, cell geometry is chosen to yield high latchup current capability and low forward-voltage drop simultaneously. The vertical structure is optimized to enhance both the turn-off speed and the safe operating area of the IGBTs. The turn-off time of the n-IGBT has been shortened to be as low as 40 ns. The p-channel IGBT latchup current has been improved four to six times over the previously reported results through innovative design and processes. An open-base bipolar transistor model has been implemented to investigate transient IGBT characteristics  相似文献   

20.
On the basis of quasi‐two‐dimensional solution of Poisson's equation, an analytical threshold voltage model for junctionless dual‐material double‐gate (JLDMDG) metal‐oxide‐semiconductor field‐effect transistor (MOSFET) is developed for the first time. The advantages of JLDMDG MOSFET are proved by comparing the central electrostatic potential and electric field distribution with those of junctionless single‐material double‐gate (JLSMDG) MOSFET. The proposed model explicitly shows how the device parameters (such as the silicon thickness, oxide thickness, and doping concentration) affect the threshold voltage. In addition, the variations of threshold voltage roll‐off, drain‐induced barrier lowering (DIBL), and subthreshold swing with the channel length are investigated. It is proved that the device performance for JLDMDG MOSFET can be changed flexibly by adjusting the length ratios of control gate and screen gate. The model is verified by comparing its calculated results with those obtained from three‐dimensional numerical device simulator ISE. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号