首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
If the reactor building sprays or local air coolers are not available, depressurization by reactor building venting is considered as a useful mitigation strategy for a severe accident management of the Wolsong plants. As the containment filtered vent system is not established in the Wolsong Units, the reactor building isolation system can be a substitute for reactor building venting. The D2O vapour recovery system which has a 0.76 m (30 in.) diameter penetration is expected to meet the NRC requirements. To investigate the effectiveness of the Reactor Building Venting Strategy, three kinds of accidents are analyzed: a SBO, a Small LOCA and a Large LOCA. The reactor building pressure behavior was analyzed with the ISAAC computer code for four different cases: without venting, 379 kPa(g)/345 kPa(g) (55 psig/50 psig), 345 kPa(g)/276 kPa(g) (50 psig/40 psig) and 345 kPa(g)/207 kPa(g) (50 psig/30 psig) valve open/close pressures. When the reactor building spray or local air coolers can not be operated, a depressurization strategy by using the D2O Vapour Recovery System could prevent a reactor building failure and reduce the amount of CsI released to the environment. The present study shows that the operation of valves at a pressure of 379 kPa(g)/345 kPa(g) (55 psig/50 psig) is safe and effective. Based on the current study, the strategy of reactor building venting is involved in severe accident management guidance-5.  相似文献   

2.
张琨 《原子能科学技术》2012,46(9):1107-1111
在AP1000核电厂的某些严重事故情景中,安全壳可能发生失效或旁通,导致大量放射性物质释放到环境中,造成严重的放射性污染。针对大量放射性释放频率贡献最大的3种释放类别(安全壳旁通、安全壳早期失效和安全壳隔离失效),分别选取典型的严重事故序列(蒸汽发生器传热管破裂、自动卸压系统阀门误开启和压力容器破裂),使用MAAP程序计算分析了释放到环境中的裂变产物源项。该分析结果为量化AP1000核电厂的放射性释放后果和厂外剂量分析提供了必要的输入。  相似文献   

3.
During a steam generator tube rupture (SGTR) accident, direct release of radioactive nuclides into the environment is postulated via bypassing the containment building. This conveys a significant threat in severe accident management (SAM) for minimization of radionuclide release. To mitigate this risk, a numerical assessment of SAM strategies was performed for an SGTR accident of an Optimized Power Reactor 1000 MWe (OPR1000) using MELCOR code. Three in-vessel mitigation strategies were evaluated and the effect of delayed operation action was analyzed. The MELCOR calculations showed that activation of a prompt secondary feed and bleed (F&B) operation using auxiliary feed water and use of an atmospheric dump valve could prevent core degradation. However, depressurization using the safety depressurization system could not prevent core degradation, and the injection of coolant via high-pressure safety injection without the use of reactor coolant system (RCS) depressurization increased fission product release. When mitigation action was delayed by 30 minutes after SAMG entrance, a secondary F&B operation failed in depressurizing the RCS sufficiently, and a significant amount of fission products were released into the environment. These results suggest that appropriate mitigation actions should be applied in a timely manner to achieve the optimal mitigation effects.  相似文献   

4.
It has been found that the pressure in the reactor coolant system (RCS) remains high in some severe accident sequences at the time of reactor vessel failure, with the risk of causing direct containment heating (DCH).Intentional depressurization is an effective accident management strategy to prevent DCH or to mitigate its consequences. Fission product behavior is affected by intentional depressurization, especially for inert gas and volatile fission product. Because the pressurizer power-operated relief valves (PORVs) are latched open, fission product will transport into the containment directly. This may cause larger radiological consequences in containment before reactor vessel failure. Four cases are selected, including the TMLB' base case and the opening one, two and three pressurizer PORVs. The results show that inert gas transports into containment more quickly when opening one and two PORVs,but more slowly when opening three PORVs; more volatile fission product deposit in containment and less in reactor coolant system (RCS) for intentional depressurization cases. When opening one PORV, the phenomenon of revaporization is strong in the RCS.  相似文献   

5.
先进非能动压水堆设计采用自动卸压系统(ADS)对一回路进行卸压,严重事故下主控室可手动开启ADS,缓解高压熔堆风险。然而ADS的设计特点可能导致氢气在局部隔间积聚,带来局部氢气风险。本文基于氢气负面效应考虑,对利用ADS进行一回路卸压的策略进行研究,为严重事故管理提供技术支持。选取全厂断电始发的典型高压熔堆严重事故序列,利用一体化事故分析程序,评估手动开启第1~4级ADS、手动开启第1~3级ADS、手动开启第4级ADS 3种方案的卸压效果,并分析一回路卸压对安全壳局部隔间的氢气负面影响。研究结果表明,3种卸压方案均能有效降低一回路压力。但在氢气点火器不可用时,开启第1~3级ADS以及开启第1~4级ADS卸压会引起内置换料水箱隔间氢气浓度迅速增加,可能导致局部氢气燃爆。因此,基于氢气风险考虑,建议在实施严重事故管理导则一回路卸压策略时优先考虑采用第4级ADS进行一回路卸压。  相似文献   

6.
In February 1986 licensing requirements regarding severe accidents in nuclear power plants were given by the Swedish Government. This regulation constitutes conditions for operation of the plants beyond 1988. The requirements are based on the conditions previously given for the Barsebäck plant including construction of the filtered venting system, which was completed at Barsebäck in 1985.For the Forsmark and Ringhals plants a strategy is being implemented to meet the new requirements. A strong emphasis is put on both hardware and procedural measures to bring the reactor core back to stable cooling - even if it is severely damaged - and maintain the containment integrity during an accident. The hardware modifications include measures to prevent temperature or pressure induced early containment failure for the BWRs, reliable back-up water sources for containment spray and means for filtered venting of all plants to prevent late containment failure by overpressure. The ultimate aim is to minimize the environmental impact of a severe accident and meet a release limit set at 0.1% of the core fission product inventory excluding noble gases.  相似文献   

7.
As required by the Swiss Federal Nuclear Safety Inspectorate (HSK) all Switzerland's five nuclear power plants have to install a containment filtered venting system. The integrity of the containment (the last barrier for radioactive releases to the environment) can be threatened by overpressure due to inadequate heat removal. Design requirements have been provided for a specific class of severe accident scenarios. In general the capacity of the system is considered sufficient if it is able to vent the steam production corresponding to a decay heat level of 1% of the thermal reactor power. The mitigation capacity for the reduction of released radioactive material is specified by a retention factor of 1000 for aerosols to prevent or limit a long term ground contamination and a factor of 100 for elementary iodine for prevention or limiting of thyroid doses and to avoid short term evacuation. Besides existing requirements for design, maintenance and operation, additional claims such as passivity and operability at any pressure conditions inside the containment have to be met. Passivity implies that the system can be initiated after a severe accident without any operator action. The system also has to allow early manual venting. Various filtered venting systems are presently available. The nuclear power plants of Beznau, Gosgen, Leibstadt and Muhleberg have already selected such systems and already implemented them or are going to install them step by step. Beznau selected the Sulzer-EWI system which is using a water pool with nozzles-baffle plates and mixing elements to achieve the required filtration of the aerosols. In both Beznau units, the systems are installed and in standby mode. Gosgen, a pressurized water reactor as well as Beznau, is going to implement a filter system developed by Siemens-KWU, known as sliding pressure venting process, combining a venturi scrubber in a water pool and a mesh filter. The boiling water reactor of Leibstadt also selected the same system as Beznau while Müheberg choose the ABB system but not in the common design. The venturi pipes are thereby integrated in the water pool of the outer torus. The system in all five nuclear power plants is fully operable and in standby mode since December 1993.  相似文献   

8.
The 3rd Periodic Safety Review of the French 1300 MWe PWRs series includes some modifications to increase their robustness in case of a severe accident. Their review is based on both deterministic and probabilistic approaches, keeping in mind that severe accidents frequencies and radiological consequences should be as low as reasonably practicable, severe accidents management strategies should be as safe as possible and the robustness of equipment used for severe accident management should be ensured.Consequently, the IRSN level 2 probabilistic safety assessment (L2 PSA) studies for the 1300 MWe reactors have been used to re-assess the results of the utility's L2 PSA and rank them to identify the containment failure modes contributing the most to the global risk. This ranking helped the review of plant modifications.Regarding strategies for accident management, the EDF management of water in the reactor cavity during a severe accident for the 1300 MWe PWRs is presented as well as the IRSN position on this strategy: this is an example where the optimal severe accident management strategy choice is not so easy to define.Regarding the robustness of equipment used for severe accident management, the interest of a diversification or redundancy of the French emergency filtered containment venting opening is one example among many others.This paper presents the analysis conducted by IRSN during the 3rd periodic safety review of the French 1300 MWe PWRs. Future NPP upgrades to limit radioactive releases in case of containment filtered venting, to prevent containment venting and basemat melt-through are analysed in another framework (post-Fukushima and long-term operation projects).  相似文献   

9.
研究建立了中国先进研究堆(CARR)在事故工况下放射性核素从燃料芯块向环境释放的数学模型。根据CARR初步事故分析结果,对可能导致放射性向外界释放的5种事故工况(小破口失水事故、换热器传热板破裂事故、重水回路管道破裂事故、燃料操作事故、冷却剂流道堵塞事故)以及假想的3盒组件燃料板熔化超设计基准事故进行了源项分析,分别给出了不同事故和释放途径下释放到环境的放射性核素的量,以防止事故情况下公众和环境遭受过量放射性损伤。  相似文献   

10.
李春  依岩  刘宇  张庆华 《核安全》2010,(2):25-29,38
安全壳地坑是许多压水堆核电厂设计为在失水事故后为堆芯冷却和安全壳排热提供再循环水的专设安全设施。安全壳内的潜在碎片源在事故中可能堵塞安全壳内的地坑滤网,从而造成安全壳地坑性能下降。为了评价安全壳地坑在破口事故后能否满足设计要求,首先应确定潜在碎片源的类型以及它们在安全壳内的位置。安全壳内现场踏勘就是寻找与定位碎片源的有效方法,并能够提供一些进行安全壳地坑性能分析的必要信息。介绍了压水堆核电厂安全壳内碎片源的一些踏勘方法。  相似文献   

11.
Containment venting is studied as a mitigation strategy for preventing or delaying severe fuel damage following hypothetical BWR Anticipated Transient Without Scram (ATWS) accidents initiated by MSIV-closure, and compounded by failure of the Standby Liquid Control (SLC) system injection of sodium pentaborate solution and by the failure of manually initiated control rod insertion. The venting of primary containment after reaching 75 psia (0.52 MPa) is found to result in the release of the vented steam inside the reactor building, and to result in inadequate Net Positive Suction Head (NPSH) for any system pumping from the pressure suppression pool. CONTAIN code calculations show that personnel access to large portions of the reactor building would be lost soon after the initiation of venting and that the temperatures reached would be likely to result in independent equipment failures. It is concluded that containment venting would be more likely to cause or to hasten the onset of severe fuel damage than to prevent or to delay it.Two alternative strategies that do not require containment venting, but that could delay or prevent severe fuel damage, are analyzed. BWR-LTAS code results are presented for a successful mitigation strategy in which the reactor vessel is depressurized, and for one in which the reactor vessel remains at pressure. For both cases the operators are assumed to take action to intentionally restrict injected flow such that fuel in the upper part of the core would be steam cooled. Resulting fuel temperatures are estimated with an off-line calculation and found to be acceptable.  相似文献   

12.
The concept of “containment” is to provide a series of physical barriers between the radioactive products of the fission process and the public. All nuclear reactors have several such barriers and LMFBRs have more than most. These barriers are, successively:
1. fuel, which retains fission products;
2. fuel cladding, which encloses the fuel;
3. sodium coolant, which absorbs fission products released through fuel caldding;
4. primary coolant boundary, which has energy absorption and leakage control capabilities;
5. containment building, hereafter referred to as containment, which provides the final engineered barrier for control of radioactive releases;
6. exclusion distance, which provides space for natural attenuation of radioactive releases before reaching the public.
These barriers, along with the design approaches and features which protect their integrity under normal and accident conditions, assure that the public is adequately protected from the potential hazards of radioactivity residing in the core. It is only in the case of hypothesized core disruptive accidents (HCDAs) that these successive barriers can be sufficiently threatened as to pose a significant threat to the public. These HCDAs involve an extremely low probability sequence of successive failures resulting in core cooling imbalances which lead to fuel overheating. Under such conditions, the fuel and cladding barriers can be lost and energy sources can be generated which threaten the primary coolant boundary and containment. This paper addresses current perspectives on containment of HCDAs with emphasis on the approach and programs in the US.  相似文献   

13.
大型先进压水堆通过堆内熔融物滞留(IVR)策略来缓解严重事故后果以降低安全壳失效风险。其中堆腔注水系统(CIS)被引入来实现IVR。本文使用严重事故分析软件计算大型先进压水堆在冷管段双端断裂事故下的事故进程、热工水力行为、堆芯退化过程和下封头熔融池传热行为,评估能动CIS的事故缓解能力。计算结果表明,事故后72 h,下封头外表面热流密度始终低于临界热流密度(CHF),表明IVR策略有效。此外,计算分析了惰性气体、非挥发性和挥发性裂变产物的释放和迁移行为。计算发现,IVR下更多的放射性裂变产物分布在主系统内,壁面核素再悬浮形成气溶胶的行为被消除,安全壳壁面上沉积的核素被大量冷凝水冲刷进入底部水池。总体来说,IVR策略能更好地管理放射性核素分布,减小放射性泄漏威胁。  相似文献   

14.
以某船用压水堆为研究对象,采用MELCOR程序建立事故分析模型,研究大破口失水事故叠加全船断电严重事故下放射性裂变产物的行为,着重分析了惰性气体和CsI的释放、迁移、滞留特点及在堆舱内的分布。结果表明,83.12%惰性气体从堆芯释放出来,并主要存在于堆舱的气空间;83.08%的CsI从堆芯释放出来,其中,72.66%滞留在堆坑熔融物与一回路内,27.34%释放到堆舱内,并主要溶解于舱底水池中。本文分析结果可为舱室剂量评估、核应急管理提供依据。  相似文献   

15.
For the EPR an improved defence-in-depth concept is applied. In an evolutionary way, accident control is developed from existing French and German PWR designs, thereby achieving a high safety level quantified by probabilistic safety assessment. Independent of that, severe accidents are considered in the design. By a robust containment and severe accident mitigation measures, the need for offsite emergency response actions (population evacuation or relocation) is restricted to the immediate plant vicinity. This paper gives an overview of the features introduced for, and the analyses correlated to, the dedicated primary depressurization, melt–coolant interaction, melt stabilization, hydrogen control, and containment heat removal.  相似文献   

16.
非能动堆芯冷却系统LOCA下冷却能力分析   总被引:1,自引:0,他引:1  
本文基于机理性分析程序建立了包括反应堆一回路冷却剂系统、专设安全设施及相关二次侧管道系统的先进压水堆分析模型,对典型的小破口失水事故和大破口失水事故开展了全面分析。针对不同破口尺寸、破口位置的失水事故,分析了非能动堆芯冷却系统(PXS)中非能动余热排出系统(PRHRS)、堆芯补水箱(CMT)、安注箱(ACC)、自动卸压系统(ADS)和安全壳内置换料水箱(IRWST)等关键系统的堆芯注水能力和冷却效果。研究表明,虽然破口尺寸、破口位置会影响事故进程发展,但所有事故过程中燃料包壳表面峰值温度不超过1 477 K,且反应堆堆芯处于有效淹没状态。PXS能有效排出堆芯衰变热,将反应堆引导到安全停堆状态,防止事故向严重事故发展。  相似文献   

17.
The gas-cooled fast breeder reactor (GCFR) under design by Gulf General Atomic is cooled with helium pressurized to 85 atm and has the reactor core, the steam generators and their associated steam turbine-driven helium circulators, and auxiliary core cooling loops all contained within a massive prestressed concrete reactor vessel (PCRV).The response of the GCFR to coolant depressurization accidents has been investigated and it has been shown that this class of accidents can be safely handled with considerable safety margin. Rapid depressurization is assumed to be caused by a seal failure in a large concrete plug closing one of the large PCRV cavities and the depressurization rate is controlled by a flow restrictor incorporated within the closure plug. Continued core cooling is provided by the main core cooling loops. The plant transient reponse following a depressurization accident has been calculated with a computer code developed at GGA. The results obtained indicate rather mild increases in peak clad temperature for a depressurization accident with the leak area defined by the flow restrictor.Additional cases investigating larger leak areas to explore safety margins indicate that the peak cladding temperature does not increase rapidly with increasing leak area. Secondary containment conditions in a depressurization accident have also been evaluated.  相似文献   

18.
反应堆发生事故最严重的后果是放射性裂变产物弥散到环境中,为了研究严重事故工况下放射性裂变产物碘在安全壳内的分布特点,本研究假设核电厂已经发生严重事故,一回路裂变产物碘释放到安全壳内。使用事故源项评估程序(ASTEC)构建核电厂安全壳结构模型,并设置边界条件,计算了裂变产物碘在不同pH值、有无金属银注入和气相辐照工况下的化学形态、化学特性、分布情况以及不同化合物的变化趋势。研究结果表明,碱性环境下可以降低安全壳内挥发性碘的生成;银的存在可以增加液相中碘的捕获和降低碘的挥发;气相辐照环境可以提高气相CH3I 和IOx的形成。本研究可以为严重事故工况下安全壳内放射性碘的去除提供支持。   相似文献   

19.
基于国际上模拟严重事故瞬态过程最详细的机理性程序SCDAP/RELAP5/MOD3.1,主要分析研究了核电站未紧急停堆的预期瞬变(ATWS)初因(失去主给水、失去厂外电和控制棒失控提升)叠加辅助给水失效导致的堆芯熔化严重事故进程,并验证阻止ATWS导致堆芯熔化进程的一次侧卸压缓解措施的充分性和有效性.计算分析结果显示,一列稳压器卸压阀不足以充分降低一回路压力,压力仍然停留在10MPa以上,存在很大高压熔堆的风险.增加一列卸压阀可把一回路压力降低到3MPa左右,安注系统得以投入,及时有效地阻止堆芯熔化进程,降低了高压熔堆风险.分析结果还显示高压安注系统的投入对一回路卸压具有重要影响.  相似文献   

20.
AP1000核电厂若在全厂断电事故下丧失正常给水,会引起稳压器满溢,将通过稳压器安全阀排放液体冷却剂,引起反应堆冷却剂水装量流失,增大反应堆堆芯裸露的风险。与此同时,安全壳内的放射性水平因稳压器满溢可能会增大,增大向环境排放大量放射物质的可能。为防止稳压器满溢,本工作进行了解决或缓解稳压器满溢的对策研究。结果表明,增大非能动余热排出系统(PRHRS)热交换器的传热面积,可防止稳压器满溢;合理降低安全壳内置换料水箱(IRWST)的背压,可增大达到稳压器满溢的裕度,有效地缓解稳压器满溢;增大稳压器的自由容积,可防止稳压器满溢。此结论对AP1000核电厂的设计和事故分析有一定的参考作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号