首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The rates of photodegradation of pyrene (Pyr) on soil surfaces under UV light have been studied. Different parameters such as temperature, soil particle sizes, soil depth, and humic acid (HA) concentration responsible for photodegradation have been monitored. The results obtained indicated that Pyr photodegradation follows pseudo-first-order kinetics. Pyr degradation was fastest at 30 °C, while the photodegradation rate was increased with the temperature from 20 to 30 °C. The degradation loss was about 35% at 30 °C, 30% at 25 °C and 25% at 20 °C, respectively. The rates of Pyr photodegradation at different soil particle sizes followed the order: less than 1 mm > less than 0.45 mm > less than 0.25 mm. The results showed that the relationship of Pyr half-life with soil depth was linear (significant correlation, p < 0.01). When the soil depth increased from 1 to 4 mm, the half-life increased from 19.80 to 37.46 d. HA treatments significantly increased the photodegradation of Pyr on soil surfaces under UV light. However the concentration of HA increased from 5 to 40 mg kg?1, the pseudo-first-order rates of Pyr decreased due to the shielding effect of HA.  相似文献   

2.
Strain rate effect and temperature effect are two important factors affecting the mechanical behavior of concrete. Each of them has been studied for several years. However, the two factors usually work together in the engineering practice. It is necessary to understand the mechanical responses of concrete under high strain rate and elevated temperature. A self-designed high temperature SHPB apparatus was used to study the dynamic compressive mechanical properties of concrete at elevated temperature. The results show that the dynamic compressive strength and specific energy absorption of concrete increase with strain rate at all temperatures. The elastic modulus decreases obviously with strain rate at room temperature and stabilizes at a level with slightly decrease at elevated temperature. The dynamic compressive strength of concrete at 400 °C increases by nearly 14% compared to the room temperature. However, it decreases at 200 °C, 600 °C and 800 °C with the decrease ratio of 20%, 16% and 48%, respectively. The dynamic elastic modulus decreases largely subjected to elevated temperature. The specific energy absorption at 200 °C, 400 °C and 600 °C is higher than room temperature and decreases to be lower than room temperature at 800 °C. Formulas are established under the consideration of mutual effect of strain rate and temperature.  相似文献   

3.
Deep drawing experiments have been performed in order to study formability of Ti–6Al–4V alloy sheet at temperature ranging from room temperature to 400 °C. It is found that below 150 °C, formability of the material is very poor and above 150 °C till 400 °C, limiting drawing ratio (LDR) is found to be 1.8 which is substantially lesser than other structural alloys. For better understanding of failures in failed cups, failure regions have been identified in neck and wall which are validated using finite element (FE) simulations. Fractured surface has been examined with scanning electron microscope (SEM) which reveals different types of shallow dimples indicating predominantly ductile failure. Additionally, in the properly drawn cups, thickness distribution has been studied over a temperature range of 150–400 °C and blank diameter 50–54 mm. In order to optimize blank diameter and temperature to obtain uniform thickness distribution of drawn cups, artificial neural network (ANN) and genetic algorithm (GA) have been employed. Thickness distribution for optimized parameters is validated using FE simulation.  相似文献   

4.
The dissolution kinetics of δ phase in Inconel 718 at 980 °C, 1000 °C and 1020 °C and its influence on high temperature notch sensitivity have been studied using a quantitative X-ray diffraction (XRD) method and high temperature stress rupture life tests of notched specimens. The amount of δ phase decreases gradually during holding time at 980 °C, 1000 °C and 1020 °C. The δ phase will be fully dissolved in the austenitic matrix at 1020 °C for more than 2 h. A certain amount of δ phase still exists after holding at 980 °C and 1000 °C for times up to 6 h; the amount remaining are 3 wt.% and 0.6 wt.%, respectively. The dissolution rate remains at a high level at the beginning, and then decreases gradually with an increase of holding time. A dynamic equilibrium state can be approached after holding at 980 °C for more than 30 min and at 1000 °C for more than 2 h. The alloy with δ phase amounts higher than 0.62 wt.% does not exhibit notch sensitivity, whereas serious notch sensitivity exists if the concentration is below 0.43 wt.%.  相似文献   

5.
The thermal pore pressure and consolidation of a saturated silty clay are experimentally studied. The specimen was heated progressively from the room temperature of 25 °C to 85 °C (T = 25 °C  35 °C  45 °C   85 °C), and then cooled from 85 °C to 25 °C (T = 85 °C  75 °C  65 °C   25 °C), with (case 1) or without (case 2) drainage between temperature stages at four confining pressures (50, 100, 150 and 200 kPa, respectively). It shows that during the undrained heating/cooling, the pore pressure reaches a peak at the time when the specimen is heated to the required temperature and then decreases slightly, and it declines to a minimum at the time when the specimen is cooled to the required temperature and then increases slightly. Such phenomenon can be attributed to the adjustment of soil structure induced by the interaction of solid grains with pore water. On the other hand, during the drained heating/cooling, the maximum pore pressure increases with the increase of temperature stages, and the normalized negative pore pressures show a decreasing trend with the decrease of temperature stages. This appears to be especially obvious as the applied confining pressures decrease. It is also observed that consolidation volumetric strains during the isothermal drainage increase significantly with the increase of temperature stage, and the reduction in the volumetric strains due to absorption after cooling shows a decreasing trend with the decrease of temperature stage.  相似文献   

6.
The influences of strain amplitude (10?5–10?4) and temperature (25 °C–500 °C) on the internal friction of a cold-drawn and solution treated Fe-19Mn alloy were investigated. The internal friction was measured using reversal torsion pendulum and multifunction internal friction equipment. The microstructure was observed using scanning electron microscopy. The phase transformation temperatures were determined using differential scanning calorimetry. The results indicated that the internal friction of the solution treated alloy was related to strain amplitude, which could be explained using the movement of Shockley partial dislocations (bowing out and breaking away). But the internal friction of the cold-drawn alloy was independent of strain amplitude because of high density dislocations formed by cold forming. Moreover, when the temperature was changed between 25 °C and 500 °C, the internal friction of the cold-drawn alloy increased slowly from 25 °C to 375 °C, and then increased quickly from 375 °C to 500 °C. However, for the solution treated alloy, there was an internal friction peak at about 210 °C in the heating process (from 25 °C to 500 °C), and there was another internal friction peak at about 150 °C in the cooling process. These peaks could be explained using the heat-assisted movement of dislocations.  相似文献   

7.
Heat treatment with different parameters were performed on the hot-hydrostatically extruded and swaged 3.5 vol.% TiBw/Ti6Al4V composites tubes. The results indicate that the primary α phase volume fraction decreases and transformed β phase correspondingly increases with increasing solution temperatures. The α + β phases will grow into coarse α phases when the aging temperature is higher than 600 °C. The hardness and ultimate tensile strength of the as-swaged TiBw/Ti6Al4V composite tubes increase with increasing quenching temperatures from 900 to 990 °C, while they decrease with increasing aging temperatures from 550 to 650 °C. A superior combination of ultimate tensile strength (1388 MPa) and elongation (6.1%) has been obtained by quenching at 960 °C and aging at 550 °C for 6 h. High temperature tensile tests at 400–600 °C show that the dominant failure modes at high temperatures also differ from those at room temperature.  相似文献   

8.
In this study, strain rate and low temperature dependencies of the viscoelastic behaviour of the T700GC/M21 composite material are characterised and analysed. Dynamic tests for various environmental temperatures are performed on hydraulic jack equipped with an environmental chamber. Three speeds, between 8.33 · 10−4 m s−1 and 0.5 m s−1, at three temperatures (20 °C, −40 °C and −100 °C) are tested. The increase of the shear modulus with the decrease of the temperature is more pronounced between −40 °C and −100 °C than between 20 °C and −40 °C. Complementary DMA (Dynamic Mechanical Analysis) tests are performed on the M21 epoxy resin to characterise the viscoelastic behaviour of the matrix which contributes to the viscoelastic behaviour of the laminate. DMA tests highlight a low temperature transition called β transition (−67 °C for the 1 Hz test) which is responsible of the larger increase of the storage modulus, for the epoxy matrix, between −40 °C and −100 °C. Consequently the β transition could also be at the origin, for the composite, of the observed larger increase of the shear modulus with respect to the strain rate, for strain rates higher than 10 s−1.  相似文献   

9.
The impact toughness of M951 alloy is investigated in temperature range between 20 °C and 800 °C. The results show that the impact toughness of samples impacted at 600 °C shows highest impact toughness value, the impact toughness value drops sharply when the samples impacted at 760 °C. In addition samples impacted at 800 °C show the higher impact toughness than that of samples impact at 760 °C. The scanning electron microscope observations show that cracks initiate at carbides particles due to high stress concentration, which leads to low impact toughness value at 20 °C. The dimples which can absorb more energy are formed during the impact at 600 °C. The samples impacted at 760 °C show lowest impact toughness. Additionally, the dimples nucleation, growth and coalescence are the major fracture mechanism at elevated temperature.  相似文献   

10.
The objective of this study was to evaluate effect of heat treatment and compression on some properties of Eastern redcedar (Juniperus virginiana) including bonding strength, hardness and surface quality. Specimens were exposed to three temperature levels of 120 °C, 160 °C and 190 °C for 6 h before they were compressed using 2.5 MPa pressure for 5 min. Polyvinyl acetate (PVAc) bonded specimens showed 23.6% reduction in their shear strength when they were exposed to a temperature of 120 °C. Such strength reduction values were 44.4% and 64.1% for the specimens exposed to temperature levels of 160 °C and 190 °C, respectively. The lowest average Janka hardness value of 214.08 kg was determined for the samples exposed to a temperature of 190 °C while those treated with a temperature of 120 °C had the highest hardness value of 397.73 kg. It appears that combination of heat treatment and compression enchanced overall surface quality of the samples in the form of their roughness determined using stylus type equipment.  相似文献   

11.
Cracking and subsequent fallout of glass may significantly affect fire dynamics in compartments. Moreover, the breaking tensile stress of glass, a crucial parameter for breakage occurrence, is the least well known among mechanical properties. In this work, a series of experiments were conducted, through mechanical tensile tests, to directly measure the breaking stress of float glass using Material Testing System 810 apparatus. Clear, ground and coated glass samples with a thickness of 6 mm were measured under ambient conditions, with a room temperature of 25 °C. The breaking stress of smooth glass samples was also measured at 75 °C, 100 °C, 125 °C, 150 °C, 200 °C, 300 °C and 400 °C, respectively. The results show that surface treatment may decrease the critical tensile stress of glass panes. The average breaking stress also fluctuates considerably, from 26.60 to 35.72 MPa with the temperature variations investigated here. At approximately 100 °C, critical stress reached the minimum value at which glass breakage occurs more easily. In addition, the thermal expansion coefficient was established using a thermal dilatometer, to obtain the maximum temperature difference float glass can withstand. It is intended that these results will provide some practical guidelines for fire safety engineers.  相似文献   

12.
The alloy of 75% Cu–25% Sn was utilised and hot-pressed for 4 min at 421, 520 and 600 °C to obtain a self-sharpening bond for diamond honing stones at low sintering temperature. Densification and mechanical tests were performed, and structures were investigated by X-ray diffraction, energy dispersive spectroscopy and scanning electron microscopy. Results showed that the porous structures changed into microporous structures when the hot pressing temperature was increased from 421 °C to 600 °C. The mechanical properties improved from HRB 79.1 to HRB 105.1 in hardness and from 104.2 MPa to 201.4 MPa in transverse rupture strength. After hot pressing at 600 °C, the microstructure consisted of α(Cu) + δ eutectoid and micropores, which meets the requirements of bonds for honing stones.  相似文献   

13.
The microstructure of the nickel-based single-crystal superalloy DD6 after tensile deformation has been studied by transmission electron microscopy (TEM) with an energy-dispersive X-ray spectroscopy (EDS). The samples were strained to fracture at room temperature, 650 °C, 850 °C and 1020 °C along the [001] orientation. The results indicate that the yield strength at 650 °C is superior to that at room temperature (20 °C), 850 °C and 1020 °C, but low ductility was observed at 650 °C. It is demonstrated that the intermediate temperature brittleness (ITB) behavior was caused by the change of the deformation mechanism at intermediate temperature. At high temperature, the γ′ precipitates coarsening directionally along the direction perpendicular to the stress axis. This can be attributed to the directional diffusion of the chemical elements.  相似文献   

14.
8 at.% Yb:YAG plate single crystal with the dimension of 170 mm × 150 mm × 30 mm was grown in vacuum by Horizontal Directional Solidification method. Aimed at blue-green color centers, annealing treatments of 15 mm × 15 mm × 1 mm samples from 900 °C to 1400 °C for 5 h and at 900 °C from 5 h to 40 h in air were conducted. The absorption spectra, emission spectra, fluorescence lifetime and X-ray photoelectron spectroscopy of samples under different annealing conditions were measured at room temperature, respectively. Annealing at above 1000 °C for 5 h or at 900 °C for 40 h made the blue-green color centers disappear and the samples turned to transparent. Absorption coefficients decreased in the 300 nm–800 nm wavelength range, emission intensities increased and emission bands broadened around 486 nm and 1029 nm with increasing temperature up to 1200 °C, then varied inversely. These values decreased or increased monotonically with increasing annealing time at 900 °C. The maximal increases of fluorescence lifetime were 62.3% and 64.7%, respectively. The calculated emission cross section of 1200 °C for 5 h was up to 4.4 × 10−20 cm2. In X-ray photoelectron spectroscopy, the concentrations of oxygen vacancies reduced from 1.28% down to absence by annealing. These experiments show that color centers are detrimental to the optical properties of HDS-Yb:YAG laser crystal and optimal annealing treatments should be conducted.  相似文献   

15.
The effect of postweld heat treatment (PWHT) on the microstructure and mechanical properties of ITER-grade 316LN austenitic stainless steel joints with ER316LMn filler material was investigated. PWHT aging was performed for 1 h at four different temperatures of 600 °C, 760 °C, 870 °C and 920 °C, respectively. The microstructure revealed the sigma phase precipitation occurred in the weld metals heat-treated at the temperature of 870 °C and 920 °C. The PWHT temperatures have the less effect on the tensile strength, and the maximum tensile strength of the joints is about 630 MPa, reaching the 95% of the base metal, whereas the elongation is enhanced with the rise of PWHT temperatures. Meanwhile, the sigma phase precipitation in the weld metals reduces the impact toughness.  相似文献   

16.
Homogenizing and normalizing heat treatments were performed on low carbon–manganese steel. Then, direct and continuous annealing heat treatments were carried out at 800 °C, 770 °C, 750 °C and 725 °C. Finally; dual phase ferrite–martensite steel was obtained. Thereafter, hardness and tensile tests were applied at ambient temperature, and impact tests for the initial sample and the dual-phase steels obtained from continuous and direct annealing heat treatment in the temperature ranges of (−67 to +70), (−70 to +60), (−70 to +29), respectively, were accomplished. The ductile–brittle transition temperature (DBTT) and the fracture modes of the samples were obtained, and the fracture surface of the steel was observed through scanning electron microscopy (SEM). The results revealed that the best mechanical properties in dual-phase steels, like impact toughness and flexibility, appear at the inter-critical temperature of 725 °C for both continuous and direct annealing cycles. The (DBTT) for the specimens obtained from direct and continuous annealing and the initial sample were −49 °C, −6 °C, and −34 °C, respectively. The dual-phase specimen achieved through the direct annealing method had better toughness and impact properties than the initial specimen or the one obtained through continuous annealing.  相似文献   

17.
Polarization measurements were conducted to monitor the corrosion behavior of superduplex stainless steel ASTM A995M-Gr.5A/EN 10283-Mat#1.4469(GX2CrNiMo26-7-4) when exposed to a) an electrolyte containing 22,700 parts per million (ppm) of chloride ions at seven different temperatures and b) an electrolyte at 25 °C and different chloride ion concentrations (5800, 22,700, 58,000 and 80,000 ppm of Cl?). The polarization curves indicate that the passive films formed are only slightly affected by NaCl concentration, but the pitting potential decreases drastically increasing the temperature, in particular > 60 °C. The image analysis of the microstructure after potentiodynamic polarization showed that the pitting number and size vary in function of the temperature of the tested medium. Nyquist diagrams were determined by electrochemical impedance spectroscopy to characterize the resistance of the passive layer. According to Nyquist plots, the arc polarization resistance decreases increasing the temperature due to a catalytic degradation of the oxide passive films.  相似文献   

18.
The LiTaO3 powders with sub micrometer grade grain size have been synthesized successfully using a molten salt method. Lithium tantalate began to form at 400 °C reaction temperature and transformed to pure phase without residual reactants when it was processed at 500 °C for 4 h in static air. The undoped LiTaO3 ceramics with a Curie temperature about 663 °C were obtained by pressureless sintering at 1300 °C for 3 h. The relative dielectric constant (ɛr) increases from 50 to 375 at temperature ranging from 30 to 663 °C and then decreases quickly as the temperature increases above 663 °C. The ceramics shows a relative dielectric constant of 49.4, a dielectric loss factor (tan δ) of 0.007, a coercive field (Ec) of 28.66 kV/cm and a remnant polarization (Pr) of 32.48 μC/cm2 at room temperature.  相似文献   

19.
The design and control of thermomechanical processing (TMP) schedule are substantially facilitated by a thorough understanding of the dominant deformation mechanisms and phase transformations which occur in the alloy system under consideration. In this regards due to the effects of deformation history, the results of conventional methods such as dilatometry and thermal analysis are insufficient. In the present work, the hot deformation characteristics of AZ31 magnesium alloy has been studied through applying a series of continuous cooling compression (CCC) tests. The compression tests were conducted as the temperature was continuously reduced from 500 °C to 100 °C. The variations of true stress with true strain (or temperature) were extracted and the critical temperatures were determined. The derived true stress-true strain curves revealed five deviations at 440 ± 5 °C, 350 ± 5 °C, 300 ± 5 °C, 215 ± 5 °C and 150 ± 5 °C, which were properly addressed considering the related microstructural evolutions.  相似文献   

20.
The dielectric relaxation and defect analysis of (Ba0.47Sr0.53)TiO3 (BST) thin films deposited on various bottom electrodes, such as Pt, Ir, IrO2/Ir, Ru, RuO2/Ru before and after annealing in O2 ambient was investigated. Through the measurement of dielectric dispersion as a function of frequency (100 Hz  f  10 MHz) and temperature (27°C  T  150°C), we studied the trapping dielectric relaxation and defect quantity of the films, and proposed an equivalent circuit on the basis of the capacitance, admittance and impedance spectra. A shallow trap level located at 0.005–0.01 eV below the conduction band was observed from the admittance spectral studies in the temperature range of 27–150°C. The origin of dielectric relaxation and defect concentration was attributed to the existence of the grain boundary defect, interface defect and shallow trap level in the films. An equivalent circuit was established which can well explain the AC response and identify the contribution of defects on electrical properties of BST thin film. From the viewpoint of trapping phenomena and dielectric relaxation analyses, we propose Ir as the optimum material for bottom electrode to withstand the post-annealing treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号