首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
针对硫酸铜结晶母液含砷、含镍、高酸的特点,根据正交试验法,采用pH调控法依次进行中和、沉铜、沉镍工业试验,探究了反应时间和终点pH对分离效果的影响。结果表明,采用液碱调控母液pH能有效回收铜、砷、镍元素。中和反应最佳参数为:终点pH=2.5~3.0、反应时间1.5 h、反应自然升温,能够以铜砷渣形式回收98%以上的砷,并与镍成功分离;沉铜反应终点pH=6.0~6.5、反应时间1.0 h、反应温度80~90 ℃,能实现铜沉淀率>93%;沉镍反应终点pH=10.0~10.5、反应时间2.0 h,在室温下压滤,镍沉淀率>98%。母液经处理后得到的沉镍后液含铜<50 mg/L,含砷<5 mg/L,含镍<100 mg/L,母液得到有效处理,实现铜回收率>96%,砷回收率>98%,镍回收率>84%。  相似文献   

2.
锌冶炼过程中镓锗的综合回收   总被引:1,自引:0,他引:1  
以传统锌冶炼富含镓、锗的低酸浸出渣为原料,考察反应温度、时间、硫酸浓度等因素对镓、锗、锌、铁浸出率的影响。在下述综合试验条件下:反应温度95℃、初始酸度153g/L、反应时间3h、液固比5.9∶1,锌、铁、镓、锗浸出率分别达到88%、93%、88%、68%。浸出液经中和、锌精矿还原后可进一步富集回收镓、锗。  相似文献   

3.
铜再生灰浸出液中含有Cu、Zn、Fe、Cd等多种有价金属。采用“Lix984+磺化煤油”有机相从铜再生灰浸出液中萃取分离铜,并采用中和除铁法对萃余液中的铁沉淀分离。探究了萃取级数、萃取相比O/A、萃取剂浓度、水相初始pH、萃取时间对Cu2+与其它金属离子萃取分离的影响,以及溶液pH、反应温度、反应时间对萃铜余液除铁过程的影响。萃铜试验优化条件为:萃取级数2级、萃取相比3:4、萃取剂浓度15%、萃取时间2 min、萃取初始水相pH=1.5。除铁试验最佳参数为:中和终点pH=4.0、反应温度40℃、陈化时间1 h。在最佳条件下,Cu的萃取率为99.12%,与Zn、Cd、Fe的分离系数分别为1 317.9、1 178.7和651,实现Cu与其它金属的有效分离。萃铜余液除铁率达99.67%,除铁后液满足锌电解液对Fe浓度的要求。  相似文献   

4.
以(NH4)2HPO4作为沉淀剂,通过选择性沉淀,进行酸性含砷冶金废水回收铁及砷铁分离研究,考察了pH、搅拌速度、温度、磷铁摩尔比等因素对铁的回收及砷铁有效分离的影响,得到合适的工艺条件为:pH2.0,搅拌速度500 r·min-1,温度50℃,磷铁比n(P)/n(Fe)为3.5.此条件下铁的回收率99.83%,液相中砷的存留率98.64%,实现了铁的回收和砷铁的有效分离.  相似文献   

5.
以锌精矿氧压浸出液预中和后液和一净渣为原料,采用锌粉置换的方法对预中和后液进行净化研究。结果表明:在1 L预中和液中加入锌粉8.33 g,置换温度65℃,搅拌时间90 min,搅拌速度300 r/min时,镉、镓、锗的沉淀率分别为87.53%、86.62%、97.83%,铜、镉、镓、锗大部分进入置换渣而得到富集;一净渣返回可提高锌粉利用率,降低生产成本。  相似文献   

6.
以氧化锌烟尘浸出液沉锗后液为原料,氧化锌烟尘为中和剂,高锰酸钾为氧化剂,采用两段逆流中和工艺,实现湿法炼锌铁渣从源头减量。研究表明,在氧化锌烟尘用量5 g/L、反应温度80 ℃、中和反应时间1 h条件下,溶液砷含量从719.20 mg/L降低至8.60 mg/L,砷脱除率达到98.83%,渣量降低至含8 g/L。渣经过艾萨炉炼铅系统处理,实现锌、铅、锗有价金属的回收和砷的集中处置。  相似文献   

7.
目前,从锌系统中综合回收铟、锗、镓,多采用硫酸溶液浸取含铟、锗、镓的物料,用双烷基磷酸(P204)萃取铟,用丹宁沉淀锗,镓则需转入盐酸溶液中才能转好地萃取。因而,流程较长,金属回收率较低,有害元素砷分散,“三废”难于消除。为改变这种情况,我们研制了新萃取剂H106,它能迳直从pH值在1左右的硫酸溶液中选择性地  相似文献   

8.
采用两段逆流单宁沉锗工艺提取硫酸锌溶液中的锗,研究了单宁酸用量、沉锗前液pH值、反应温度、反应时间等对锗沉淀率的影响。结果表明,在两段单宁酸总用量为25倍、沉锗前液pH值为2.5、反应温度为50℃、反应时间为20 min的工艺条件下,锗沉淀率可达99.50%以上,沉锗后液含锗低于1.00 mg/L。  相似文献   

9.
镓、锗是重要的稀散金属,从锌冶炼过程中综合回收镓、锗成为该原生金属产量的重要来源。目前主要采用酸浸工艺从镓锗置换渣回收镓、锗,回收率较低,资源利用率低。本文利用镓、锗两性物质的属性,采用碱浸-还原挥发工艺进行了回收镓锗置换渣中镓、锗的试验研究,得到以下主要结论。碱浸试验单因素最佳工艺条件为NaOH浓度4 mol/L、反应温度90℃、液固比8 mL/g、搅拌速度400 r/min,在此条件下,镓锗置换渣中镓、锗浸出率分别达到91.25%和78.95%;强化球磨浸出对镓、锗的浸出率没有改善作用;还原挥发试验的单因素最佳工艺条件为温度1 200℃、粉煤配入量30%、挥发时间4 h,在此条件下,碱性浸出残渣中锗的挥发率达到91.02%。该工艺产生的挥发残渣和砷酸钙渣返回火法炼铅系统综合回收铜、砷等有价金属,实现了渣的无害化处理。本文回收镓、锗的方法可为同类企业从锌冶炼工序中回收镓、锗提供参考。  相似文献   

10.
以氢氧化钠作为沉淀剂,对含砷废水进行选择性沉淀研究,考察了pH值、搅拌速度、温度等因素对砷、铁分离效果的影响,确定了合适的工艺条件:温度25℃,pH=13.5,搅拌速度500 r/min.此工艺条件下铁的回收率达到99.9%以上,实现了砷、铁的有效分离.  相似文献   

11.
对目前硅中硼、磷去除技术进行了综述,并针对生产高纯硅过程中硼、磷难除去的问题,提出采用熔炼造渣一酸洗的新工艺流程去除硼、磷。结果表明:通过熔炼造渣一酸洗处理之后,硼的含量可降至0.5μg/g以内,磷的含量可降至1.2/μg/g。该工艺除杂效果显著、流程简单、成本低、易实现产业化;可有效地处理硼、磷含量高的硅料,且除杂效果显著。  相似文献   

12.
介绍了近十年来国际冶金行业中对去除废钢中有色金属的研究动态,重点阐述对Zn、Sn这两种元素去除方法。  相似文献   

13.
100t VD精炼对钢液脱气和除非金属夹杂的作用   总被引:1,自引:0,他引:1  
陈迪庆  李小明  胡忠玉 《炼钢》2004,20(5):18-21
介绍了100tVD精炼时的吹氩流量,真空度≤67Pa时的精炼时间对钢液脱氢及脱氮的影响,得出VD精炼时的最佳吹氩流量和真空精炼时间,同时分析了真空精炼对钢中非金属夹杂物的影响。  相似文献   

14.
低浓度钴溶液除铁、钙、镁和P204深度除杂工艺研究   总被引:1,自引:0,他引:1  
研究了从低浓度钴溶液中除去铁、钙、镁的pH条件和P204萃取除杂工艺.除铁初步试验表明:黄钠铁矾法除铁时,将pH值控制在3.0~4.0之间,除铁效果很好,达到99%以上.在黄钠铁矾-针铁矿联合法的除铁操作条件下,除铁效果也达到了95.65%,且钴损率从21.3%降到了4.74%;低浓度钴溶液最佳除钙镁pH值为3.5~4.0;正交试验得到P204萃取除杂最佳工艺参数:有机相组成ψP204/ψ汽油为25%/75%,O/A相比1∶2,皂化率为75%.  相似文献   

15.
秦勇 《鞍钢技术》2014,(6):35-39
介绍了攀钢钒一期高炉煤气全干式除尘工艺原理、主要设备及关键技术,同时对运行过程中存在的问题进行了分析,通过采取检测高炉荒煤气含水量和瓦斯灰Zn含量、优化除尘筒体运行方式和反吹清灰模型等措施,有效减轻了高炉荒煤气管道堵塞和煤气设备腐蚀问题,延长了干式除尘布袋使用周期,确保一期高炉煤气除尘的稳定运行。  相似文献   

16.
砷盐净化工艺的研究   总被引:2,自引:0,他引:2  
本文叙述了目前湿法炼锌主要的净化工艺,着重介绍了株洲冶炼厂引进的OT砷盐净化工艺的反应机理及工艺流程.  相似文献   

17.
中间包夹杂物的去除与控制新技术   总被引:5,自引:0,他引:5  
刘金刚  刘浏  王新华 《炼钢》2006,22(2):30-33,42
通过对中间包中不同去除夹杂物的手段进行综合分析,得到各环节中间包均应保护浇注和防止卷渣卷气,中间包应具有合理的控流装置(上下挡墙、湍流抑制器、旋涡抑制器)以得到理想的流场;利用钢包注流生成的小气泡、中间包气幕挡墙和电磁搅拌离心流动可以有效去除中间包内钢水中夹杂物;连续真空处理对脱气和去除夹杂物有良好效果但其可调性差,电磁过滤可作为辅助方法去除夹杂物。  相似文献   

18.
从节能减排的角度,对太钢5号高炉煤气净化系统的改造进行了阐述.太钢5号高炉煤气净化系统增设干法除尘改造投产后,提高了净煤气纯度,降低了净煤气粉尘含量;提高了TRT入口净煤气的温度,增加了TRT的发电量;节约了工业循环水.  相似文献   

19.
介绍采用P204 萃取除Fe、Zn 和Mn,HA-PE206协萃体系除Cu,HA-PE206协萃体系除Ni、Cu,并用净化后液进行可溶阳极电解得到1# 电解钴的工艺研究过程。  相似文献   

20.
Al2O3夹杂物在钢-渣界面处的运动特性及去除率   总被引:1,自引:0,他引:1  
郭洛方  李宏  王耀  李永卿 《钢铁》2012,47(4):23-27
通过理论计算和分析,研究了夹杂物颗粒在钢-渣界面处夹杂物去除层内的运动特性及去除率。结果表明:在夹杂物去除层内,Al2O3夹杂物颗粒的布朗扩散上浮临界尺寸为1.33μm,直径小于临界尺寸的夹杂物颗粒很难上浮去除;布朗碰撞的优势区域主要是直径为2.5μm以下的夹杂物颗粒之间以及直径为2.5~5μm夹杂物颗粒与0.5μm以下的微小颗粒之间的碰撞;直径为20~150μm的夹杂物颗粒在钢-渣界面去除层中9min内很容易完全上浮去除,而直径小于10μm的夹杂物颗粒去除率很低且升高缓慢,是提高钢液洁净度的主要控制对象。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号