首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The effect of grain size on the dielectric properties of MgO–TiO2–ZnO–CaO ceramics is investigated. Attrition milling is chosen to obtain nanometre particle size from micrometre particle size powders. Additionally, the present study is focused on the effect of the nature of milling balls on εr, tanδ, and the temperature coefficient of capacitance (abbreviated as TCC). For that, three kinds of balls are tested: Ф1, Ф2 or Ф5 mm stabilised zirconia balls. For the samples milled by Ф2 mm balls for 10 h, the ceramics sintered at 1,270 °C showed favorable dielectric properties with εr = 22.6, tanδ = 1.3 × 10?5, and TCC = 19.1 ppm/°C.  相似文献   

3.
4.
Journal of Materials Science: Materials in Electronics - The effects of injecting TiO2 to a Li2O–MgO–ZnO–B2O3–SiO2 (LMZBS) microwave dielectric composite on sinterability,...  相似文献   

5.
Li2O–Al2O3–SiO2 (LAS) glass–ceramics for low temperature co-fired ceramics (LTCC) application were prepared by melting method, and the effects of MgO on the sinterability, microstructure, dielectric property, thermal expansion coefficient (CTE) and mechanical character of this glass–ceramics have been studied. The X-ray diffraction images represent that the main phase is β-spodumene solid solutions. And some ZrO2 and CaMgSi2O6 phases in LAS glass–ceramics are detected. The LAS glass–ceramics without additive (MgO) sintered at 800° had the dielectric properties: dielectric constant (εr) of 5.3, dielectric loss (tanδ) of 2.97 × 10?3 at 1 MHz, CTE value of 1.06 × 10?6 K?1, bulk density of 2.17 g/cm3, and flexural strength of 73 MPa. 5.5 wt% MgO-added LAS glass–ceramic achieves densification at 800° exhibited excellent properties: low dielectric constant and loss (εr = 7.1, tanδ = 2.02 × 10?3 at 1 MHz), low CTE (2.89 × 10?6 K?1), bulk density = 2.65 g/cm3 as well as high flexural strength (145 MPa). The results indicate that the addition of MgO is helpful to improve the dielectric and mechanical properties. The formation of CaMgSi2O6 crystal phase with higher CTE leads to the increase of CTE value of LAS glass–ceramics due to the increasing MgO content, and the increase of CTE is favourable for matching with silicon (3.1 × 10?6 K?1). The prepared LAS glass–ceramics have the potential for LTCC application.  相似文献   

6.
The effects of CaO–B2O3–SiO2 (CBS) glass addition on the sintering temperature and dielectric properties of Li2ZnTi3O8–TiO2 (LZT) composite ceramics have been investigated. Due to the compensating effect of rutile TiO2f ≈ +450 ppm/ °C), the temperature coefficient of resonant frequency (τf) for Li2ZnTi3O8 + 4 wt% TiO2 with biphasic structure was adjusted to a value near zero. The pure LZT ceramics were usually sintered at high temperature of about 1,160 °C. It was found in our experiment that a small amount of CBS glass additives could effectively lower the sintering temperature of LZT ceramics to 900 °C. With increasing the content of CBS glass, both of dielectric constant (εr) and quality factor (Q × f) value decreased. Typically, the 1 wt% CBS glass added Li2ZnTi3O8 + 4 wt% TiO2 ceramic sintered at 900 °C for 4 h exhibited good microwave dielectric properties of εr = 26.9, Q × f = 23,563 GHz and τf = ?1.5 ppm/ °C, which made it promising for low temperature co-fired ceramics technology application.  相似文献   

7.
CaO–B2O3–SiO2 (CBS) glass powders are prepared by traditional glass melting method, whose properties and microstructures are characterized by Differential thermal analysis (DTA), X-ray diffraction (XRD) and scanning electron microscopy (SEM). It is found that the pure CBS glass ceramics possess excellent dielectric properties (ε r = 6.5, tan δ = 5 × 10−3 at 10 GHz), but a higher sintering temperature (>900 °C) and a narrow sintering temperature range (about 10 °C). The addition of a low-melting-point CaO–B2O3–SiO2 glass (LG) could greatly decrease the sintering temperature of CBS glass to 820 °C and significantly enlarge the sintering temperature range to 40 °C. The CBS glass ceramic with 30 wt% LG glass addition sintered at 840 °C exhibits better dielectric properties: ε r ≈ 6, tan δ < 2 × 10−3 at 10 GHz, and the major phases of the sample are CaSiO3, CaB2O4 and SiO2.  相似文献   

8.
9.
10.
The effect of SrO–B2O3–SiO2 glass additive (SBS) on the microstructure and dielectric properties of CaCu3Ti4O12 (CCTO) ceramics was investigated. This SBS–added CCTO ceramics were prepared by the solid state reaction. The undesirable impurity phases Ca3SiO5 started appearing in the XRD patterns, suggesting a possible chemical reaction between CaTiO3 and SiO2 (the devitrification production of SBS glass). The SBS glass additive promoted the grain growth and densification of CCTO ceramics. Cole–Cole plots of conductance suggested that the resistivity grain boundary decreased with increasing amount of SBS glass (when x = 0–2 wt%), then increased (when x = 2–3 wt%). The addition of SBS glass was desirable to increase the dielectric constants (up to 104) and lowered the dielectric losses of CCTO over the frequency range of 450–40 kHz at the relatively lower sintering temperature for relatively shorter sintering time (1,050 °C, 12 h).  相似文献   

11.
12.
A series of ceramics with a general formula Ca1+xLa4?xNbxTi5?xO17 (0 ≤ x ≤ 4) were fabricated using the solid-state ceramic route. The phase, microstructure, and microwave dielectric properties varied distinctly with composition or the value of x. X-ray diffraction results showed that the two end member phases, CaLa4Ti5O17 and Ca5Nb4TiO17, crystallized into single phases with orthorhombic and monoclinic crystal structure, respectively. For intermediate compounds with x = 1, 2, and 3, mixture phases CaLa4Ti5O17 and Ca5Nb4TiO17 coexisted and a trace amount of second phase was detected. The ceramics showed high ε r in the range of 45–52, relatively high quality factors with Q × f in the range of 9,870–15,680 GHz and τ f value in the range between ?38 and ?126.4 ppm/°C. τ f of CaLa4Ti5O17 can be tuned to a near-zero value by addition of suitable amount of TiO2.  相似文献   

13.
14.
15.
16.
17.
18.
In this work, in order to obtain the materials for low temperature co-fired ceramics applications, CaO–Al2O3SiO2 (CAS) based ceramics were synthesized at a low sintering temperature of 900 °C. The influences of Al2O3/SiO2 ratio on the microstructure, mechanical, electrical and thermal properties were studied. According to the X-ray diffractomer and scanning electron microscopy results, the addition of the Al2O3 is advantageous for the formation of the desired materials. Anorthite(CaAl2Si2O8) is the major crystal phase of the ceramics, and the SiO2 phase is identified as the secondary crystal phase. No new crystal phase appears in the ceramics with the increasing Al2O3 content. More or less Al2O3 addition would all worsen the sintering, mechanical and dielectric properties of CAS based ceramics. The ceramic specimen (Al2O3/SiO2 = 20/18.5) sintered at 900 °C shows good properties: high bending strength = 145 MPa, low dielectric constant = 5.8, low dielectric loss = 1.3 × 10?3 and low coefficient of thermal expansion value = 5.3 × 10?6 K?1. The results indicate that the prepared CAS based ceramic is one of the candidates for low temperature co-fired ceramic applications.  相似文献   

19.
The effects of Bi4B2O9 addition on the sintering temperature, phase transition and microwave dielectric properties of BaO–Nd2O3–4TiO2 (BNT) ceramics have been investigated. With 10 wt% Bi4B2O9 addition, the sintering temperature of the BNT ceramics can be lowered down to about 1,150 °C. The secondary phase was observed at the level of 15 wt% Bi4B2O9 addition. The Bi4B2O9 addition can significantly affects the microwave dielectric properties. The Q × f 0 value is a function of the sintering temperature and the Bi4B2O9 content. For the samples sintered at 1,150 °C, Q × f 0 value varies from 6,300 to 3,300 GHz as the Bi4B2O9 addition increases from 5 to 20 wt%. The addition of Bi4B2O9 does not induce much degradation in εr but modified the τf value to near zero. Typically, When 10 wt% Bi4B2O9 is added, the τf of the ceramics could be tuned to a near-zero value (~1.2 ppm/°C), a substantial εr (~86) and Q × f 0 (~4,670 GHz) could also be achieved simultaneously. The Bi4B2O9 is an efficient sintering additive to decrease the sintering temperature and tune the τf value of the microwave dielectric materials for the practical microwave applications.  相似文献   

20.
Effects of Li2O–B2O3 on the sintering behavior and the microwave dielectric properties of (Zn0.8Mg0.2)2SiO4–TiO2 ceramics were investigated as a function of Li2O–B2O3 content and sintering temperature. The Li2O–B2O3 combined additives successfully reduced the sintering temperature of (Zn0.8Mg0.2)2SiO4–TiO2 ceramics from 1,250 °C to 900 °C. With the increase of Li2O–B2O3 content, the TiO2 phase decreased and the unknown second phase increased, which led to the dielectric constant (ε r ) and the maximum Q × f value decrease, and the temperature coefficient of resonant frequency (τ f ) shift to a negative value. The specimens with 3 wt%Li2O–B2O3 sintered at 900 °C for 2 h showed ε r of 8.84, Q × f value of 15,500 GHz, and τ f of 17.8 ppm/°C. And the material was compatible with Ag electrodes, which made it a promising ceramic for low temperature co-fired ceramics technology application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号