首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, ZnO nanorods (NRs) were prepared by a two-step solution phase reaction. A composite photoanode architecture is fabricated by adding 0–0.20 at.% ZnO NRs into ZnO nanoparticles (NPs). The scanning electron microscopy image shows that the average diameter and length of the ZnO NRs are about 50 nm and 2–5 µm, respectively, and the ZnO NRs are uniformly embedded into the ZnO NPs photoanode. The UV–vis spectrum analysis reveals that the amount of dye adsorption of the composite photoanode decreases with increasing ZnO NRs content. Meanwhile, the influence of ZnO NRs contents on the dye-sensitized solar cells (DSSCs) performance is systematically investigated. The photocurrent density–voltage (J–V) characteristics reveal that the device performance of DSSCs can be significantly enhanced by the composite photoanode. Typically, the DSSC with 0.15 at.% ZnO NRs obtains the optimal energy conversion efficiency of 3.8%, which is 28.4% higher than that of the pristine ZnO DSSCs. The electrochemical impedance spectroscopy (EIS) analysis shows that ZnO NRs can provide a direct pathway for accelerating electron transport, extending the electron lifetime, suppressing electron recombination and improving electron collection efficiency. These results indicate that the incorporation of ZnO NRs in the photoanode is an effective way to improve the performance of DSSCs.  相似文献   

2.
A ZnO nanorods (NRs)/TiO2 nanoparticles (NPs) film has been prepared by electrochemical deposition of ZnO NRs growth on P25 TiO2 NPs film surfaces. It was found that ZnO NRs/TiO2 NPs could significantly improve the efficiency of dye-sensitized solar cells owing to its relatively enhanced light-scattering capability and efficient charge transport efficiency. The overall energy-conversion efficiency (η) of 3.48 % was achieved by the formation of ZnO NRs/TiO2 NPs film, which is 33 % higher than that formed by TiO2 NPs alone (η = 2.62 %). The charge recombination behavior of cells was investigated by electrochemical impedance spectra, and the results showed that ZnO NRs/TiO2 NPs film has the longer electron lifetime than TiO2 NPs alone, which could facilitate the reduction of recombination processes and thus would promote the photocatalysis and solar cell performance.  相似文献   

3.
TiO2 nanoparticles were synthesized by hydrothermal process to prepare metal oxide based photoanode for dye sensitized solar cell (DSSC) fabrication. X-ray diffraction analysis indicates the formation of tetragonal TiO2. High resolution transmission electron microscopy reveals the presence of agglomerated TiO2 particles and the average particle size is found to be 14 nm. The UV–Visible absorption spectrum ensures the absorption maximum at 268 nm. The band gap energy of TiO2 nanoparticles was found to be 3.3 eV which lies in the ultra-violet (UV) region. Impedance studies of TiO2 nanoparticles show an increase in conductivity with an increase in bias voltage. In the present work, the UV active TiO2 nanoparticles are employed for the fabrication of DSSC based on the hybrid co-sensitization of natural dye (Eugenia Jambolana) and organic dye (Eosin). The interfacial charge transfer resistance phenomena of the DSSC determined by electrochemical impedance spectroscopy is discussed in detail. Photovoltaic efficiency of 0.1377 % is achieved for the fabricated DSSC with co-sensitization of natural and organic dyes.  相似文献   

4.
In this study, after CdS quantum dots sensitized ZnO hierarchical spheres (ZnO HS), we used a simple process to deposit CdSe QDs on ZnO by spin-coating-based SILAR, and applied to photoanodes of quantum dots-sensitized solar cells. Before CdS and CdSe QDs deposition, the ZnO HS photoanodes were modified by Zn(CH3COO)2·2H2O methanol solution to further enhance the open-circuit voltage and power conversion efficiency (PCE). The program of modifying photoanodes and the number of CdSe spin-SILAR cycles are evaluated on the optical and electrochemical properties of the cells. As a result, a high energy conversion efficiency of 2.49 % was obtained by using modified ZnO HS/CdS photoanode under AM 1.5 illumination of 100 mW cm?2. And further decorated by the CdSe QDs, the ZnO HS/CdS/CdSe cell achieved a PCE of 5.36 % due to the modification of ZnO HS nanostructure, the enhanced absorption in the visible region, the lower recombination reaction and higher electron lifetime.  相似文献   

5.
Dye sensitized solar cells (DSSCs) have been fabricated using ZnO and CaCO3-coated ZnO nanoparticles. The effect of CaCO3 coating on the performance of DSSC has been investigated. CaCO3-coated ZnO nanoparticles have been synthesized by hydrothermal method. X-ray diffraction patterns of synthesized nanoparticles reveal that the ZnO and CaCO3-coated ZnO nanoparticles have respectively wurtzite and rhomb-centred structure and both having hexagonal phase. Transmission electron microscopy study reveal that ZnO and CaCO3-coated ZnO nanoparticles possess spherical symmetry and have average particle size respectively 6.2 and 6.7 nm. In case of CaCO3/ZnO nanoparticles, the quenching in photoluminescence emission intensity has been attributed to the decrease in recombination rate of photo-generated electron–hole pairs. UV–Vis absorption spectra, confirms that the electrodes fabricated from the CaCO3-coated ZnO nanoparticles have higher absorbance that shows their higher dye adsorbing power. The use of CaCO3 coating has been found to enhance the efficiency of DSSC by over 100 %.  相似文献   

6.
Pure zinc-oxide and a composition of zinc oxide-single walled carbon nanotubes (ZnO-SWCNTs) thin films were prepared by using a sol–gel doctor blade technique. A precursor of zinc acetate dehydrate (Zn(CH3COO)2·2H2O), absolute ethanol (C2H5OH) and triethanolamine were mixed in one solution. Non-acid treatment SWCNTs were doped in the prepared solution. Structural and morphological properties of ZnO and ZnO-SWCNTs thin films were studied by means of X-ray diffractometer (XRD), field-emission scanning electron microscopy (FESEM), atomic force microscopy (AFM) and transmission electron microscopy (TEM). XRD measurements indicated that the crystallite size of ZnO was bigger than the crystallite size of ZnO-SWCNTs; 0.4331 and 0.3386 nm, respectively. The FESEM images showed the hexagonal and nanorod structures of ZnO thin film and a broccoli-like ZnO nanostructures coated with CNTs for ZnO-SWCNTs thin film. The AFM analysis revealed smoother surface morphology of ZnO-SWCNTs thin film compared to the surface of pure ZnO thin film. TEM results captured the inner structures of ZnO and ZnO-SWCNTs. Inner and outer diameter of non-acid treatment SWCNTs were recorded about 5.09 and 14.95 nm, respectively. Photovoltaic performance of ZnO-SWCNTs based dye-sensitized solar cell (DSSC) showed high power conversion efficiency of 0.102 % compared to ZnO based DSSC (0.019 %). This study suggests that SWCNTs should be acid-treated to produce highly porous structure and greater surface area for better photovoltaic performance of the DSSCs.  相似文献   

7.
Chang JY  Kim TG  Sung YM 《Nanotechnology》2011,22(42):425708
Solution-grown ZnO nanorods (NRs) were successfully conjugated with CdSe/ZnS quantum dots (QDs) and Ag nanoparticles (NPs) to suppress intrinsic defect emission and to enhance band-edge emission at the same time. First, high-density and high-crystallinity ZnO NRs of diameter 80–90 nm and length 1.2–1.5 μm were grown on glass substrates using a low-temperature seed-assisted solution method. The as-synthesized ZnO NRs showed sharp photoluminescence (PL) band-edge emission centered at ~377 nm together with broad defect emission in the range of ~450–800 nm. The ZnO NRs were decorated with CdSe/ZnS QDs and Ag NPs, respectively, by sequential drop-coating. The PL of CdSe/ZnS QD||ZnO NR conjugates showed that ZnO band-edge emission decreased by 73.8% due to fluorescence resonance energy transfer (FRET) and charge separation between ZnO and CdSe/ZnS by type II energy band structure formation. On the other hand, Ag NP||CdSe/ZnS QD||ZnO NR conjugates showed increased band-edge emission (by 25.8%) and suppressed defect emission compared to bare ZnO NRs. A possible energy transfer mechanism to explain the improved PL properties of ZnO NRs was proposed based upon the combined effects of FRET and surface plasmon resonance (SPR).  相似文献   

8.
Zinc oxide thin films have been successfully prepared by co-precipitation and electrodeposition methods onto Fluorinated tin oxide substrate using zinc nitrate aqueous solutions at various bath temperatures (25–75 °C). The deposition of electrodeposition method was conducted using both using linear sweep voltammetry and Chronoamperometric techniques. The effects of solution composition, agitation and bath temperature on the electrochemical measurements and ZnO film characteristics were fully analyzed. The findings reveal that temperature and nitrate ion concentration have a strong promoting effect on ZnO film formation. Moreover, the obtained powders were investigated by X-ray diffraction, Field emission scanning electron microscopy and UV–Vis Spectroscopy. Structural characterization by X-ray diffraction indicates the formation of ZnO phase and the deposited film exhibits the Zincite structure with crystallite size around 51 nm. The photovoltaic performance of dye-sensitized solar cells based on both ZnO prepared by co-precipitation and electrodeposition methods was investigated. A power conversion efficiency (η) of 3.5 % was achieved for the DSSC with co-precipitation ZnO, which is higher than that of the cell with electrodeposition ZnO (2.5 %). Explanations are substantiated by incident photon to electron conversion efficiency curves.  相似文献   

9.
Investigation of metal organic decomposed rare earth cerium oxide thin films deposited on Si substrate by sol–gel spin coating technique was carried out. The structural properties have been examined by using XRD, Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM). The XRD confirms the cubic phase of CeO2 thin films with (111) plane observed at 28.54°. The FTIR and EDAX spectra confirm the formation of CeO2 films with atomic percentage of 19.39 and 54.82% of Ce and O2, respectively. Thickness of 60.11 nm of CeO2 film measured by cross sectional FESEM image, the average roughness of ~0.6 nm of 400?°C annealed CeO2 films were observed from AFM micrograph. The MOS capacitors were fabricated by using Ti/Au bilayer metal contact depositing by E-beam evaporator on CeO2/Si thin film for electrical measurements. Capacitance and conductance voltage measurement was carried out to determine the effective oxide charges (Qeff), interface trap density (Dit) and dielectric constant (k) and are 2.48?×?1012 cm?2, 1.26?×?1012 eV?1cm?2 and ~39, respectively. The effective metal work function of 5.68 for Ti/Au bilayer is observed to be higher than the work function of Ti or Au metals in vacuum.  相似文献   

10.
Ceria and gadolinium (Gd) doped ceria nanowires have been synthesised by hydrothermal technique with mild reaction conditions. The structure and morphology of as-prepared nanowires were studied by X-ray diffraction and field emission scanning electron microscopy (FE-SEM) techniques. The FE-SEM analysis revealed the formation of nanowires with an average diameter of 10–15 nm. Atomic force microscopy (AFM) analysis for the annealed samples confirms the existence of well defined nanorods of 120–150 nm diameter and 1–1.3 μm length. Fluorescence and diffuse reflectance spectroscopy techniques have been used to study the optical properties of the prepared nanowires. The observed red shift in the ultraviolet–visible absorption spectra confirmed the promoted electron–phonon interaction in CeO2 and Gd:CeO2 nanowires compared to bulk structures. The prepared nanowires/rods were thermally stable at up to 350?°C, as revealed by thermogravimetric analysis. The electrical properties were studied by cyclic voltammetry (CV) and impedance spectroscopy. The CV results demonstrated that Gd:CeO2 exhibited a higher electro-oxidation than CeO2 nanowires.  相似文献   

11.
Since the importance of sulfonamide compound determinations, in this work, Sulfadiazine (SDZ), one of the significant sulfonamide antibiotics was electrochemically studied. SDZ is listed as world health organization (WHO) crucial medications in treatment of basic health system. A new graphene based nano-composite electrode was made and used for the electrochemical studies of some sulfondiamides. Electrochemical behavior of the compounds was initially investigated on bare and modified carbon paste electrodes using cyclic voltammetry (CV). The modifiers include Ceria (CeO2) NPs, reduced graphene oxide (RGO) and RGO decorated CeO2 NPs. The composition of 5% RGO decorated CeO2 nanoparticles, 65% graphite, and 30% paraffin presented the best redox response for Sulfadiazine. Then, the nano-composite electrode was applied for SDZ measurement by fast Fourier transform square wave voltammetry (FFTSWV) on the proposed nano-composite electrode. Response linear range was obtained for 3–10 µM (R2?=?0.9956) and 30–1000 µM (R2?=?0.9948) of SDZ concentration, respectively, with LOD of 0.17 µM and LOQ of 3 µM. Finally, SDZ content in some pharmaceutical formulations were effectively analyzed by the proposed method and acceptable relative error of 4.6% was achieved.  相似文献   

12.
Micro/nanostructured systems based on metallic oxide (ZnO) with noble metal (Ag) on the surface (Ag/ZnO) are synthesized by solvothermal method from zinc nitrate hexahydrate (Zn(NO3)2·6H2O), zinc acetate dehydrate (Zn(CH3COO)2·2H2O), zinc acetylacetonate hydrate (Zn(C5H7O2)2·xH2O) and silver nitrate (Ag(NO3)) as precursors. In these systems, polyvinylpyrrolidone (PVP) is used as surfactant for controlling particle morphology, size and dispersion. The obtained materials are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM), UV–vis diffuse reflectance spectroscopy (DRS), N2 gas adsorption–desorption (BET) and Raman spectroscopy (RS). By XRD results, all major peaks are indexed to the hexagonal wurtzite-type structure of the ZnO and samples with noble metal, extra diffraction peaks are detected which correspond to the face-centered-cubic (fcc) structure of the metallic Ag. Depending on used precursor, different morphologies have been obtained. Mainly, ZnO prims-like rods – NRs (with 0.8 ? aspect ratio ? 3.4) – have been observed. Quasi-spherical particles of metallic Ag (with diameters between 558 ± 111 μm and 22 ± 1 nm) have been detected on the ZnO surface. Photocatalytic results (all samples studied >30% MB degradation) verify the important effect of surfactant and the viability of synthesized Ag/ZnO micro/nanocomposites for environmental applications.  相似文献   

13.
White-light-controlled resistance switching and photovoltaic effects in TiO2/ZnO composite nanorods array grown on fluorine-doped tin oxide (FTO) substrate by hydrothermal process were investigated. The average length of TiO2/ZnO nanorods is about 3 μm, and the average diameter is about 200 nm. ZnO nanoparticles with size 5–10 nm are embedded in TiO2 base material. The current–voltage characteristics of Ag/[TiO2/ZnO]/FTO device demonstrate an outstanding rectifying property and bipolar resistive switching behavior. Specially, the resistive switching behavior can be regulated by white-light illuminating. In addition, this structure also exhibits a substantial white-light photovoltaic effect. This study is helpful for exploring the multifunctional materials and their applications in nonvolatile multistate memory devices and solar cells.  相似文献   

14.
In the present study, cerium oxide (CeO2) nanoparticles were prepared through sonochemical-assisted method, using (NH4)2Ce(NO3)6, hydrazine and ethylenediamine as precursors. Also, the effects of concentration of precursors as well as reaction time on the morphology and size of nanoparticles were investigated. The synthesized CeO2 nanoparticles were characterized by X-ray diffraction patterns, energy-dispersive X-ray spectroscopy, scanning electron microscopy, Fourier transform infrared spectroscopy and diffuse reflectance spectroscopy. The results indicate that the estimated particle size of synthesized CeO2 nanoparticles is about 20–30 nm. Furthermore, photocatalytic activities of CeO2 nanoparticles were investigated by degradation of methylene blue under UV-light irradiation.  相似文献   

15.
Novel dandelion-like titanium oxide (TiO2) decorated reduced graphene oxide (rGO@TiO2) hybrids were obtained by a one-step solvent-thermal reduction of GO and tetrabutyl titanate simultaneously. The hybrids were used as a novel filler for high performance poly(arylene ether nitriles) (PEN) composites. The thermal stability and morphological properties of the PEN composites were, respectively, investigated by the thermo gravimetric analysis and scanning electron microscope, aiming at examining the effect of surface decoration on the dispersion of rGO@TiO2 in PEN matrix. The results indicated that the rGO@TiO2 present better dispersion in the PEN matrix. Meanwhile, the derived composite films exhibited high thermal stability with initial decomposition temperatures (T id ) in the range of 477–487 °C. DSC curves showed that the glass transition temperatures were in the range of 219–227 °C. Moreover, all of the composite films also showed excellent flexibility and mechanical properties. The tensile modulus and strength were increased about 4 and 6 % with 5 wt% rGO@TiO2 loading, respectively. More importantly, for 30 wt% rGO@TiO2 reinforced PEN composite film, the dielectric permittivity dramatically increased from 3.8 to 81 at 1 kHz.  相似文献   

16.
Venkataramana Bonu  A. Das 《Mapan》2013,28(4):259-262
Measuring the size of the quantum dots (QDs) with accuracy is crucial considering its effect on the physical and chemical properties. Size determination of SnO2 QDs prepared by a soft chemical method using various techniques and their correlation is reported here. Direct method like high resolution transmission electron microscopy (HRTEM), and indirect method like X-ray diffraction and ultra violet–visible (UV–Vis) techniques used for size determination and then correlated. Effective crystallite size found from TEM morphological analysis is 2.4 ± 0.1 nm, which matches closely with the crystallite size of 2.3 ± 0.1 nm as calculated using Williamson–Hall plot. Particle size is also calculated from UV–Vis spectroscopy following quantum confinement effect in SnO2. The obtained slopes from the Tauc’s plot provide a distribution of particle sizes which matches well with the result from TEM analysis.  相似文献   

17.
The present paper attempts to report the preparation of TiO2–ZnO nanocomposite photoanode materials for dye-sensitized solar cells (DSSC) and analyse the efficiency of DSSC with natural dyes. The structural and optical characteristics of the composites were studied by transmission electron microscopy, X-ray diffraction, field effective scanning electron microscopy, energy dispersive spectrometry, photoluminescence and absorption spectroscopy. The synthesized nanocomposites formed on FTO substrates are applied as photoanode in a dye-sensitized solar cell (DSC). The natural dyes extracted from Beta vulgaris (Beetroot) and Syzygium cumini (black plum) were used in the fabrication of DSSC. The solar cells’ photovoltaic performance in terms of short-circuit current, open circuit voltage, fill factor and energy conversion efficiency was tested with photocurrent density–voltage measurements. The evolution of the solar cells parameters is explored as a function of the photoanode and type of dye used in DSSC fabrication.The obtained results show that the efficiency of DSSC significantly changes with the addition of ZnO to TiO2, while the Beta vulgaris dye has evidently shown higher photo sensitized performance compared to Syzygium cumini in the preparation of DSSC.  相似文献   

18.
CeO2-ZnO materials were prepared by amorphous citrate process and characterized by TGA, XRD, UV-DRS and surface area measurements. TGA showed that the citrate precursors decompose in the range 350–550°C producing CeO2-containing catalytic materials. XRD and DRS results indicated the formation of well-dispersed interstitialZn xCe4+ 1−2x Ce3+ 2x O2 solid solution on ZnO matrix. Addition of CeO2 to ZnO produced high surface area mixed oxide materials in citrate method. Cyclohexanol conversion reaction was carried out on these catalytic materials to investigate the effect of rare earth oxide on the activity and selectivity. It was found that CeO2 promotes the activity of ZnO without affecting the selectivity to cyclohexanone significantly. The factors such as reaction temperature and WHSV have turned out to be important for cyclohexanol conversion over CeO2-containing ZnO catalyst materials.  相似文献   

19.
CeO2 and Co3O4–CeO2 nanoparticles were synthesized, thoroughly characterized, and evaluated in the COPrOx reaction. The CeO2 nanoparticles were synthesized by the diffusion-controlled precipitation method with ethylene glycol. A notably higher yield was obtained when H2O2 was used in the synthesis procedure. For comparison, two commercial samples of CeO2 nanoparticles (Nyacol®)—one calcined and the other sintered—were also studied. Catalytic results of bare CeO2 calcined at 500 °C showed a strong influence of the method of synthesis. Despite having similar BET area values, the CeO2 synthesized without H2O2 was the most active sample. Co3O4–CeO2 catalysts with three different Co/(Co + Ce) atomic ratios, 0.1, 0.3, and 0.5, were prepared by the wet impregnation of the CeO2 nanoparticles. TEM and STEM observations showed that impregnation produced mixed oxides composed of small CeO2 nanoparticles located both over the surface and inside the Co3O4 crystals. The mixed oxide catalysts prepared with a cobalt atomic ratio of 0.5 showed methane formation, which started at 200 °C due to the reaction between CO2 and H2. However, above 250 °C, the reaction between CO and H2 became important, thus contributing to CO elimination with a small H2 loss. As a result, CO could be totally eliminated in a wide temperature range, from 200 to 400 °C. The methanation reaction was favored by the reduction of the cobalt oxide, as suggested by the TPR experiments. This result is probably originated in Ce–Co interactions, related to the method of synthesis and the surface area of the mixed oxides obtained.  相似文献   

20.
Many researchers investigated the properties of either discrete metal oxide CeO2 or ZnO materials. However, less attention has been paid to the various nanostructure and performances of CeO2 and ZnO nanocomposite up to now. In this paper, a facile and low cost one-pot hydrothermal synthesis method has been adopted to obtained directly precursors of CeCO3OH and Zn5(CO3)2(OH)6 with different Ce atom molar ratios to Zn, which are transformed into their corresponding metal oxide to form the ZnO/CeO2 heterostructure nanocomposites (HSNCs) by pyrolysis. The heterostructure is composed of ZnO and CeO2 monocrystals, simultaneously, CeO2 monocrystals are well dispersed on the surface of ZnO monocrystal for cosmetics. Bing dependent on the analysis results of XRD and TEM for the obtained precursors before and after pyrolysis, the formation mechanism of HSNCs was proposed. To the best of our knowledge, the paper first reported heterostructured ZnO/CeO2 nanocomposite grown in one-pot mixed aqueous solution of cerium nitrate, zinc acetate and urea without other extra surfactant. Additionally, the influence of various Ce/Zn molar ratios on the heterostructure, fluorescence emission and UV–visible absorption properties of HSNCs was investigated in detail. ZnO/CeO2 HSNCs display higher fluorescence emission with the increasing Ce/Zn molar ratio. Meanwhile, the larger Ce/Zn molar ratio of ZnO/CeO2 HSNCs, the stronger transparency in the visible light region and the weaker UV absorption. The results are due to the fact that the band gap of ZnO/CeO2 HSNCs will decrease from 3.25 to 3.08 eV when Ce/Zn atom molar ratio is increased from 0 to 0.08. By the comprehensive analysis on the optical performances of HSNCs with the different Ce/Zn atom molar ratios, ZnO/CeO2-0.04 HSNCs could become UV absorber materials and transparent material in the visible region. ZnO/CeO2-0.04 HSNCs with the UV-filtering and Vis-transparent properties is appropriate for personal-care cosmetics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号