首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
On a single-pulse basis, the tungsten armor for the chamber walls in a laser inertial fusion energy power plant must withstand X-ray fluences of 0.4-1.2 J/cm2 with almost no mass loss, and preferably no surface changes. We have exposed preheated tungsten samples to 0.27 and 0.9 J/cm2 X-ray fluence from the Z accelerator at Sandia National Laboratories to determine the single-shot X-ray damage threshold. Earlier focused ion beam analysis has shown that rolled powdered metal formed tungsten and tungsten alloys, will melt when exposed to 2.3 J/cm2 on Z, but not at 1.3 J/cm2. Three forms of tungsten - single-crystal (SING), chemical-vapor-deposited (CVD), and rolled powdered metal (PWM) - were exposed to fluence levels of 0.9 J/cm2 without any apparent melting. However, the CVD and PWM sample surfaces were rougher after exposure than the SING sample, which was not roughened. BUCKY (1D) calculations show a threshold of 0.5 J/cm2 for melting on Z. The present experiments indicate no melting but limited surface changes occur with polycrystalline samples (PWM and CVD) at 0.9 J/cm2 and no surface changes other than debris for samples at 0.27 J/cm2.  相似文献   

2.
Laser fusion chamber walls will experience large, pulsed heat loads at frequencies of several hertz. The heating, consisting of X-rays, neutrons, and ions, occurs over a few microseconds and is deposited volumetrically over the first few microns of the wall. For a reasonable chamber radius, the heating will be such that the surface temperature is a significant fraction of the melt temperature of the wall, and significant plasticity can be expected in ductile wall materials. This paper presents results for the transient temperatures and stresses in a tungsten-coated steel first wall for a laser fusion device. Failure analyses are carried out using both fatigue and fracture mechanics methodologies. The simulations predict that surface cracks are expected in the tungsten, but the cracks will arrest before reaching the substrate if the crack spacing is sufficiently small. In addition, the thermal and stress fields are compared for a laser fusion device with several simulation experiments. It is shown that the simulations can reproduce the peak surface temperatures, but the corresponding spatial distributions of the stress and temperature will be shallower than the reactor case.  相似文献   

3.
The High Average Power Laser (HAPL) program is carrying out a coordinated effort to develop inertial fusion energy based on lasers, direct-drive targets and a dry wall chamber. The dry wall must accommodate the ion and photon threat spectra from the fusion micro-explosion over its required lifetime. This paper summarizes the current HAPL strategy on the armor/first wall configuration based on tungsten and ferritic steel as preferred armor and structural materials, respectively. The thermal performance of an example fully dense tungsten armor configuration on a ferritic steel first wall is described showing the basis for separating the high energy accommodation function of the armor from the structural function of the first wall. Example design operating windows for the armor, first wall and blanket are presented based on different requirements and constraints. The possibility of utilizing an engineered porous armor is discussed. Key chamber wall and armor issues are summarized.  相似文献   

4.
The high average power laser program is developing an inertial fusion energy demonstration power reactor with a solid first wall chamber. The first wall (FW) will be subject to high energy density radiation and high doses of high energy helium implantation. Tungsten has been identified as the candidate material for a FW armor. The fundamental concern is long term thermo-mechanical survivability of the armor against the effects of high temperature pulsed operation and exfoliation due to the retention of implanted helium. Even if a solid tungsten armor coating would survive the high temperature cyclic operation with minimal failure, the high helium implantation and retention would result in unacceptable material loss rates. Micro-engineered materials, such as castellated structures, plasma sprayed nano-porous coatings and refractory foams are suggested as a first wall armor material to address these fundamental concerns. A micro-engineered FW armor would have to be designed with specific geometric features that tolerate high cyclic heating loads and recycle most of the implanted helium without any significant failure. Micro-engineered materials are briefly reviewed. In particular, plasma-sprayed nano-porous tungsten and tungsten foams are assessed for their potential to accommodate inertial fusion specific loads. Tests show that nano-porous plasma spray coatings can be manufactured with high permeability to helium gas, while retaining relatively high thermal conductivities. Tungsten foams where shown to be able to overcome thermo-mechanical loads by cell rotation and deformation. Helium implantation tests have shown, that pulsed implantation and heating releases significant levels of implanted helium. Helium implantation and release from tungsten was modeled using an expanded kinetic rate theory, to include the effects of pulsed implantations and thermal cycles. Although, significant challenges remain micro-engineered materials are shown to constitute potential candidate FW armor materials.  相似文献   

5.
Candidate dry-wall materials for the reactor chambers of future laser-driven Inertial Fusion Energy (IFE) power plants have been exposed to ion pulses from RHEPP-1, located at Sandia National Laboratories. These pulses simulate the MeV-level ion pulses with fluences of up to 20 J/cm2 that can be expected to impinge on the first wall of such future plants. Various forms of tungsten and tungsten alloy were subjected to up to 1600 pulses, usually while being heated to 600 °C. Other metals were exposed as well. Thresholds for roughening and material removal, and evolution of surface morphology were measured and compared with code predictions for materials response. Powder-metallurgy (PM) tungsten is observed to undergo surface roughening and subsurface crack formation that evolves over hundreds of pulses, and which can occur both below and above the melt threshold. This roughening is worse than for other metals, and worse than for either tungsten alloyed with rhenium (W25Re), or for CVD and single-crystal forms of tungsten. Carbon, particularly the form used in composite material, appears to suffer material loss well below its sublimation point. Some engineered materials were also investigated. It appears that some modification to PM tungsten is required for its successful use in a reactor environment.  相似文献   

6.
High temperature helium and deuterium implantation on tungsten has been studied using the University of Wisconsin inertial electrostatic confinement device. Helium or deuterium ions from a plasma source were driven into polished tungsten powder metallurgy samples. Deuterium implantation did not damage the surface of the specimens at elevated temperatures (∼1200 °C). Helium implantation resulted in a porous surface structure above 700 °C. A helium fluence scan, ion energy scan, and temperature scan were all completed. With 30 keV ions, the pore formation started just below 4 × 1016 He+/cm2. The pore size increased and the pore density decreased with increasing fluence and temperature. The energy scan from 20 to 80 keV showed no consistent trend.  相似文献   

7.
This paper introduces the JNM Special Issue on the development of a first wall for the reaction chamber in a laser fusion power plant. In this approach to fusion energy a spherical target is injected into a large chamber and heated to fusion burn by an array of lasers. The target emissions are absorbed by the wall and encapsulating blanket, and the resulting heat converted into electricity. The bulk of the energy deposited in the first wall is in the form of X-rays (1.0-100 keV) and ions (0.1-4 MeV). In order to have a practical power plant, the first wall must be resistant to these emissions and suffer virtually no erosion on each shot. A wall candidate based on tungsten armor bonded to a low activation ferritic steel substrate has been chosen as the initial system to be studied. The choice was based on the vast experience with these materials in a nuclear environment and the ability to address most of the key remaining issues with existing facilities. This overview paper is divided into three parts. The first part summarizes the current state of the development of laser fusion energy. The second part introduces the tungsten armored ferritic steel concept, the three critical development issues (thermo-mechanical fatigue, helium retention, and bonding) and the research to address them. Based on progress to date the latter two appear to be resolvable, but the former remains a challenge. Complete details are presented in the companion papers in this JNM Special Issue. The third part discusses other factors that must be considered in the design of the first wall, including compatibility with blanket concepts, radiological concerns, and structural considerations.  相似文献   

8.
The helium retention characteristics and helium bubble distribution in tungsten were studied using 3He(d,p)4He nuclear reaction analysis (NRA) and transmission electron microscopy (TEM) on two forms of tungsten: single crystal and polycrystalline, implanted to 1 × 1019 3He/m2 at 850 °C and annealed at 2000 °C. The NRA results revealed that as-implanted single crystal and polycrystalline tungsten exhibited similar helium retention characteristics. Stepwise annealing reduced the helium retention in both single crystal and polycrystalline tungsten when the number of implantation steps and annealing time were increased. The TEM results indicated that microstructure played a large role in helium trapping; the existence of grain boundaries led to significant cavity formation and greater cavity growth. Single crystal tungsten had less trapping sites for helium, allowing long range He diffusion during annealing. The decrease of He retention in polycrystalline tungsten during stepwise annealing was probably due to significant recrystallization, resulting in decrease of grain boundary density.  相似文献   

9.
The first wall of an inertial fusion energy reactor may suffer from surface blistering and exfoliation due to helium ion irradiation and extreme temperatures. Tungsten is a candidate for the first wall material. A study of helium retention and surface blistering with regard to helium dose, temperature, pulsed implantation, and tungsten microstructure was conducted to better understand what may occur at the first wall of the reactor. Single crystal and polycrystalline tungsten samples were implanted with 1.3 MeV 3He in doses ranging from 1019 m−2 to 1022 m−2. Implanted samples were analyzed by 3He(d,p)4He nuclear reaction analysis and 3He(n,p)T neutron depth profiling techniques. Surface blistering was observed for doses greater than 1021 He/m2. For He fluences of 5 × 1020 He/m2, similar retention levels in both microstructures resulted without blistering. Implantation and flash heating in cycles indicated that helium retention was mitigated with decreasing He dose per cycle.  相似文献   

10.
In this study, a method is presented based on mass spectroscopy to measure the areal density of deuterium on a graphite surface exposed to tokamak discharges. The studied sample was cut from a bumper limiter exposed in the TEXTOR tokamak and annealed by a 1 J Excimer laser (KrF). The energy used was 400 mJ cm−2, which is below the threshold for ablation, 1 J cm−2. The release of HD and D2 was measured by a mass spectroscopy set-up and no other species released from the sample were detected in this experiment. The amount of D released from the sample after 20 laser pulses was measured to 7 × 1016 D atoms per cm−2 (for this particular sample) and most of the hydrogen at the surface was released in the first pulse, as checked by nuclear reaction analysis (NRA) techniques, which gave changes of the amount of deuterium before and after laser annealing. The sensitivity in this experiment was 5 × 1014 atoms per cm−2 for HD and 5 × 1013 atoms per cm−2 for D2.  相似文献   

11.
An experiment to remove re-deposited layers and to release hydrogen using a glow discharge in oxygen (O-GDC) has been performed in the HT-7 superconducting tokamak. In the absence of magnetic fields, the O-GDC wall conditioning had produced rapid, controlled co-deposit removal. Average removal rates, 5.2 × 1022 H-atoms/h, 5.65 × 1021 D-atoms/h and 5.53 × 1022 C-atoms/h, respectively, were obtained during 145 min O-GDC experiment in the pressure range 0.5-1.5 Pa. The corresponding removal rate of co-deposited films was ∼1.19 μm/day (26.5 g/day for carbon) based on an area of 12 m2. Compared to thermo-oxidation and O-ICR experiment, high pressure O-GDC wall conditioning promoted the oxidation and improved the C and D atoms removal. In the O-GDC experiment, the removal rates of H-atoms and D-atoms as H2O, HDO and D2O were higher than that of H2 and D2 by factors of about 20 and 50, respectively. During the 145 min O-GDC experiment, about 14.5% O-atoms were converted into carbon oxides and hydroxides, and about 5.37 × 1022 O-atoms were adsorbed on the walls corresponding to a coverage of 4.5 × 1021 O/m2 on an wall area of 12 m2. In a 100 min helium glow discharge (He-GDC) following the O-GDC experiment, 1.53 × 1022 O-atoms, about 28.5% oxygen retained on the walls, were removed. The removal rate of H-atoms in He-GDC cleaning after O-GDC experiment was lower than that in He-GDC cleaning before O-GDC experiment, which indicates that the O-GDC wall conditioning had effectively reduced hydrogen retention on the walls.  相似文献   

12.
The release mechanisms of noble gases from plasma-facing components were observed spectroscopically in the TEXTOR plasma boundary by determining the velocity distribution from Doppler broadening. For the first time, three different mechanisms for helium and neon release from graphite and tungsten limiters could be distinguished quantitatively in a tokamak: thermal desorption, ion-induced desorption and particle reflection. Under the assumption that the thermal desorption follows a Maxwellian velocity distribution, the ion-induced desorption can be expressed by a Thompson velocity distribution. Calculating the particle reflection by the Monte-Carlo code TRIM, these processes could be separated in the measured velocity distribution.  相似文献   

13.
In order to improve the mechanical properties of low activation vanadium alloys for fusion structural applications, effects of small addition of Si, Al and Y on the control of interstitial impurities (O, C and N) during the fabrication process were examined for several V-4Cr-4Ti-Si-Al-Y alloys produced by the levitation melting method. Charpy impact tests and tensile tests were carried out for five kinds of V-4Cr-4Ti-Si-Al-Y alloys using miniaturized specimens for the purpose of evaluating the effects of these elements on mechanical properties. Oxygen concentration decreased almost linearly with increasing loss of yttrium during melting. This oxygen reduction with yttrium loss during the melting process may have been achieved by two types of mechanisms, they are, (i) suppression of oxygen penetration into the molten materials from the environment and (ii) getting of oxygen from the matrix by forming Y2O3, which floats to the surface during the melting. There was no effect of Si and Al addition to control the concentration of interstitial impurities. V-4Cr-4Ti-0.1Si-0.1Al-0.1Y alloy showed the best impact properties out of the alloys investigated. Upper-shelf energy of the alloys decreased with increasing yttrium content. High number density of coarse inclusions containing yttrium could cause the degradation of impact properties, though they hardly affect tensile properties of the alloys. Even at higher yttrium contents, V-4Cr-4Ti-Y alloys without addition of Si and Al showed relatively high upper-shelf energy.  相似文献   

14.
The liquid scintillation counting of solid samples (LSC-SS technique) was successfully used to study the role of microstructure and heat treatments on the behavior of residual tritium in several austenitic stainless steels (as-cast remelted tritiated waste, 316LN and 321 steels). The role of desorption annealing in the 100-600 °C range on the residual amount of tritium in tritiated waste was investigated. The residual tritium concentration computed from surface activity measurements is in good agreement with experimental values measured by liquid scintillation counting after full dissolution of the samples. The kinetics of tritium desorption recorded with the LSC-SS technique shows a significant desorption of residual tritium at room temperature, a strong barrier effect of thermal oxide films on the tritium desorption and a dependance of the tritium release on the steels microstructure. Annealing in the 300-600 °C range allows to desorb a large fraction of the residual tritium. However a significant trapping of tritium is evidenced. The influence of trapping phenomena on the concentration of residual tritium and on its dependance with the annealing temperature was investigated with different recrystallized and sensitized microstructures. Trapping is evidenced mainly below 150 °C and concerns a small fraction of the total amount of tritium introduced in austenitic steels. It presumably occurs preferentially on precipitates such as Ti(CN) or on intermetallic phases.  相似文献   

15.
The tritium management in the first wall of two European breeding blanket options, A-DC and TAURO, has been simulated numerically to analyse the influence of the material selected: ODS-RAFM steel for the Advanced Dual-Coolant (A-DC) and SiCf/SiC composite for TAURO options. The SRIM code has been used to simulate triton implantation and define the tritium source in each kind of material as a function of the depth. The TMAP4 code was used to analyse the posterior transitory gas transport process within the material, while taking into account the tritium transport properties of each material and the temperature variation through material thickness and operating time. Both the transient evolution and the final steady-state tritium transport behaviour have been characterised. The tritium transient flux to the coolant, the recycling flux and the absorbed tritium transient inventories have been simulated. Main conclusions have been drawn about the tritium performance of each first wall.  相似文献   

16.
Tungsten (W) and molybdenum (Mo) were coated on silicon carbide (SiC) for use as a refractory armor using a high power plasma arc lamp at powers up to 23.5 MW/m2 in an argon flow environment. Both tungsten powder and molybdenum powder melted and formed coating layers on silicon carbide within a few seconds. The effect of substrate pre-treatment (vapor deposition of titanium (Ti) and tungsten, and annealing) and sample heating conditions on microstructure of the coating and coating/substrate interface were investigated. The microstructure was observed by scanning electron microscopy (SEM) and optical microscopy (OM). The mechanical properties of the coated materials were evaluated by four-point flexural tests. A strong tungsten coating was successfully applied to the silicon carbide substrate. Tungsten vapor deposition and pre-heating at 5.2 MW/m2 made for a refractory layer containing no cracks propagating into the silicon carbide substrate. The tungsten coating was formed without the thick reaction layer. For this study, small tungsten carbide grains were observed adjacent to the interface in all conditions. In addition, relatively large, widely scattered tungsten carbide grains and a eutectic structure of tungsten and silicon were observed through the thickness in the coatings formed at lower powers and longer heating times. The strength of the silicon carbide substrate was somewhat decreased as a result of the processing. Vapor deposition of tungsten prior to powder coating helped prevent this degradation. In contrast, molybdenum coating was more challenging than tungsten coating due to the larger coefficient of thermal expansion (CTE) mismatch as compared to tungsten and silicon carbide. From this work it is concluded that refractory armoring of silicon carbide by Infrared Transient Liquid Phase Processing is possible. The tungsten armored silicon carbide samples proved uniform, strong, and capable of withstanding thermal fatigue testing.  相似文献   

17.
The trapping of hydrogen and helium in polycrystalline tungsten irradiated with 500 eV He+, H+ and D+ ions, individually or sequentially, has been measured by thermal desorption spectroscopy. Specimens irradiated with 500 eV He+ at 300 K show three He release peaks in the vicinity of ∼500, ∼1000, and ∼1200 K. The helium is thought to form He vacancy complexes or bubbles. Increasing the specimen temperature to 700 K does not significantly affect the trapping behavior of He. Sequential He+-D+ irradiation at 300 K results in the elimination of He release above 800 K. Instead, both D and He were released in the range 400-800 K. This is interpreted as interstitial D and He released from the near surface. Sequential He+-D+ irradiation at 700 K resulted in a reduced single He peak at ∼1000 K with very little release observed below 800 K; no D was trapped for irradiations at 700 K. Sequential D+-He+ irradiations at 300 K show that He trapping occurs in much the same manner as for the He+-only case while D retention is reduced at the near surface. Sequential D+-He+ irradiations at 700 K indicate that pre-irradiation with D+ has little or no effect on the subsequent trapping behavior of He.  相似文献   

18.
A physical model has been developed to describe the coolant activity behaviour of 99Tc, during constant and reactor shutdown operations. This analysis accounts for the fission production of technetium and molybdenum, in which their chemical form and volatility is determined by a thermodynamic treatment using Gibbs-energy minimization. The release kinetics are calculated according to the rate-controlling step of diffusional transport in the fuel matrix and vaporization from the fuel-grain surface. Based on several in-reactor tests with defective fuel elements, and as supported by the thermodynamic analysis, the model accounts for the washout of molybdenum from the defective fuel on reactor shutdown. The model also considers the recoil release of both 99Mo and 99Tc from uranium contamination, as well as a corrosion source due to activation of 98Mo. The model has provided an estimate of the activity ratio 99Tc/137Cs in the ion-exchange columns of the Darlington Nuclear Generating Station, i.e., 6 × 10−6 (following ∼200 days of steady reactor operation) and 4 × 10−6 (with reactor shutdown). These results are consistent with that measured by the Battelle Pacific Northwest Laboratories with a mixed-bed resin-sampling device installed in a number of Pressurized Water Reactor and Boiling Water Reactor plants.  相似文献   

19.
In liquid metal fast breeder reactors (LMFBR), traps are provided in the primary coolant circuit to reduce the contamination due to the deposition of long lived γ-emitting nuclides. The binding energies of the radionuclides with iron and nickel were estimated using Pauling’s electronegativity. The results are comparable to the sorption enthalpies derived from the experimental isotherms.  相似文献   

20.
The equilibrium CO pressure over the condensed phase region of CeO2(s)-CeC2(s)-C(s) was determined by adopting a method termed as the dynamic effusion MS method, which involves the measurement of the CO effusing out from the sample using a quadrupole mass spectrometer, even during carbothermic reduction of the oxide. The formation of oxicarbide has been ruled out. The Gibbs energies of the reaction, CeO2(s)+4C(s)=CeC2(s)+2CO(g), at various temperatures in the range 1350-1550 K were then determined from the equilibrium CO pressures. From the Gibbs energies of the reaction, the Gibbs energy of formation of CeC2(s) at 298 K was derived. Similarly, from the data on the second and third-law enthalpies of the above reaction, the enthalpy of formation of CeC2(s) at 298 K was calculated. The recommended Gibbs energy and enthalpy of formation of CeC2(s) at 298 K are (103.0±6.0) and (120.1±11.0) kJ mol− 1, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号