首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electrolytic magnetic abrasive finishing (EMAF) is a compound finishing process, involving traditional magnetic abrasive finishing (MAF) and an electrolytic process. The aim of including the electrolytic process into the EMAF system is to produce a passive film (or oxide film), which is much easier to remove than the original metal surface during processing. Moreover, in the presence of both electric and magnetic fields, the negatively charged ions move toward the anode surface along a cycloid curve by the action of the Lorentz force. Under appropriate operating conditions, this phenomenon promotes electrolytic effects, resulting in a further increase in finishing efficiency, yielding a superior surface. This study describes the principles of the process, the finishing characteristics of surface roughness and material removal, and the associated mechanisms. Experimental results show that the EMAF process yields quite excellent finishing characteristics, better than those obtained by MAF, especially with a high electrolytic current. The process parameters such as electrolytic current, electrode gap, magnetic flux density, and rate of workpiece revolution must be appropriately fitted to obtain a superior refined surface with high efficiency.  相似文献   

2.
磁粒研磨加工是一种应用广泛且高效的表面加工技术,具有加工质量高、适用范围广、柔性加工、自锐性好、易于实现自动化等优点,能够有效去除工件表面的划痕、积碳、毛刺和卷边等缺陷.首先,综述了磁粒研磨加工技术的发展与研究,包括磁粒研磨加工技术的提出与发展、数学模型分析和加工参数产生的影响,其中着重论述了加工过程中单颗磨粒的力学模...  相似文献   

3.
The ultimate goal of this project is to develop an efficient finishing process enabling unskilled operators to finish automatically the complicated micro-curved surface and edge surface of the magnesium alloy. The results achieved in the first phase as described in this paper focus on the basic characteristics of the plane and edge surface finishing and deburring of this alloy by the use of vertical vibration-assisted magnetic abrasive finishing process. It demonstrates that realization of efficient finishing of magnesium alloy is possible by the process. The removal volume per unit time of magnesium alloy is larger than that of other materials such as brass and stainless, that is, high-efficiency finishing could be achieved. Micro-burr of magnesium alloy could be removed easily in a short time by the use of the magnetic abrasive finishing process. Furthermore, deburring efficiency considerably increases with vertical vibration assistance.  相似文献   

4.
钛合金管内表面的电化学磁力研磨复合光整试验   总被引:4,自引:0,他引:4  
针对热挤压成型对钛合金管的内表面会产生微裂纹、褶皱、毛刺等表面缺陷的问题,提出了一种高效率的电化学磁力研磨复合光整加工方法。设计了电化学磁力研磨复合光整加工的实验装置,分别与纯磁力研磨加工和纯电化学加工进行了光整加工试验对比,检测分析了不同工艺加工前后表面的粗糙度、微观形貌、摩擦磨损行为、表面残余应力和能量谱。结果表明:在相同的加工时间内,与单纯电化学加工和磁力研磨加工相比,电化学磁力研磨复合光整加工的表面粗糙度Ra可达到0.2μm,材料去除量和加工效率显著提高;表面显微形貌要明显优于其他两种加工方式;且加工后表面很好地维持了原有材料的化学成分和表面性质;能够使表面由拉应力转变为约–200 MPa的压应力状态,从而获得更好的表面应力状态。  相似文献   

5.
磁场辅助电化学抛光试验研究   总被引:2,自引:0,他引:2  
从带电离子在电磁场中的受力行为和运动状态入手,试验研究了磁场对阳极溶解速度、产物扩散速度、材料去除速度、极间电流的影响,最后还分析了磁场对电解液的搅拌作用。研究表明由于洛仑兹力和电场力的共同作用,改变了离子的运动轨迹,提高了峰点或侧面的溶解速度和产物的扩散速度,从而有效地改善了表面粗糙度;峰点的去除速度远大于无磁场时的去除速度,谷点的去除速度远小于无磁场时的去除速度,因此从微观上说磁场辅助电化学抛光对基体的损害较小,精度保持性好;磁场的搅拌加快了液相传质,改变了电化学反应,使极间电流强度增大,抛光效率提高。  相似文献   

6.
Ultrasonic assisted magnetic abrasive finishing (UAMAF) integrates the use of ultrasonic vibrations and magnetic abrasive finishing (MAF) process to finish surfaces to nanometer order in a relatively short time. The present study emphasizes on the fabrication of UAMAF setup. Using this experimental setup, experimental studies have been carried out with respect to five important process parameters namely supply voltage, abrasive mesh number, rotation of magnet, abrasive weight percentage, and pulse on time (Ton) of ultrasonic vibrations selected based on literature available in the area of MAF process and ultrasonic generator controls. Percentage change in surface roughness (?Ra) for AISI 52100 steel workpiece has been considered as response and unbonded SiC abrasives are used in the work. The experimental results showed that the UAMAF process has better finishing potential as compared to those obtainable by using MAF process for similar processing conditions. The surface roughness value obtained by UAMAF was as low as 22 nm within 80 s on hardened AISI 52100 steel workpiece using unbonded SiC abrasives. Scanning electron microscopy and atomic force microscopy studies were carried out to feel the surface texture produced and to identify finishing mechanism.  相似文献   

7.
A new precision finishing process for complex internal geometries using smart magnetorheological polishing fluid is developed. Magnetorheological abrasive flow finishing (MRAFF) process provides better control over rheological properties of abrasive laden magnetorheological finishing medium. Magnetorheological (MR) polishing fluid comprises of carbonyl iron powder and silicon carbide abrasives dispersed in the viscoplastic base of grease and mineral oil; it exhibits change in rheological behaviour in presence of external magnetic field. This smart behaviour of MR-polishing fluid is utilized to precisely control the finishing forces, hence final surface finish. A hydraulically powered experimental setup is designed to study the process characteristics and performance. The setup consists of two MR-polishing fluid cylinders, two hydraulic actuators, electromagnet, fixture and supporting frame. Experiments were conducted on stainless steel workpieces at different magnetic field strength to observe its effect on final surface finish. No measurable change in surface roughness is observed after finishing at zero magnetic field. However, for the same number of cycles the roughness reduces gradually with the increase of magnetic field. This validates the role of rheological behaviour of magnetorheological polishing fluid in performing finishing action.  相似文献   

8.
放电等离子烧结新型NdFeB永磁材料研究   总被引:2,自引:0,他引:2  
研究了采用放电等离子烧结技术制备新型NdFeB永磁材料。重点考察了工艺条件对磁体的磁特性、尺寸精度和密度的影响。利用B-H回线仪、扫描电镜和电子能谱对其磁特性、显微组织结构和成分进行了分析测试,同时考察了材料在电解液中的电化学特性及其氧化腐蚀特性。结果表明:与传统烧结NdFeB相比,这种新型NdFeB磁体的显微组织明显不同,其晶粒尺寸细小均匀,富钕相弥散分希;磁体的最佳磁特性为最大磁能积2401kJ/m^3矫顽力1260kA/m;密度达到7.58g/cm^3;尺寸精度为20μm;磁体同时具有良好的抗腐蚀性。  相似文献   

9.
杨欢  陈松  张磊  徐进文  陈燕 《表面技术》2022,51(2):313-321
目的 在传统的平面磁粒研磨加工中添加脉冲辅助磁场,增大加工区域中磁感应强度和加工时磁感应强度动态变化,丰富磨料粒子在加工时的运动形式,使研磨轨迹复杂化,降低工件表面粗糙度,获得更好的工件表面形貌.方法 通过分析磨料粒子在有无辅助磁场时各自的受力情况,探究辅助磁场对磨料在加工时运动状态的影响,研究脉冲辅助磁场下磨料的运动...  相似文献   

10.
在原有轴承套圈辗扩工序后直接增加一道整径工序,使套圈锻件得到精化。运用多元回归分析法对整径变形参数进行了四元线性全回归分析与四元线性和非线性的逐步回归分析,给出了典型的整径力确定的回归方程。  相似文献   

11.
目的 提高钛合金磁流变抛光的表面质量和抛光效率。方法 用Halbach磁场阵列强化磁场,通过载液盘与磁铁反向旋转来增强磁流变抛光效率,使抛光头拥有更强的恢复性与自锐性。通过仿真模拟和实际测量对比研究Halbach阵列与N-S阵列的磁场分布和磁场梯度。依照试验结果描述抛光剪切力、表面粗糙度与表面微观形貌随时间的变化规律。采用响应面法优化载液盘转速、磁铁转速和加工间距等3个工艺参数,建立剪切力和表面粗糙度的拟合方程数学预测模型,并对其中的不显著项进行优化。结果 在响应面交互作用分析中,工艺参数对剪切力的影响的大小顺序为加工间距、磁铁转速、载液盘转速;对表面粗糙度影响的大小顺序为载液盘转速、磁铁转速、加工间距。根据不同的需求,确定选定范围内的工艺参数组合,需要快速去除材料时,使剪切力趋于最大值的工艺参数组合为载液盘转速227 r/min,磁铁转速64 r/min,加工间距0.1 mm,通过20 min抛光后得到了表面粗糙度Sa为34.911 nm的光滑表面。抛光过程中,钛合金抛光所受剪切力τ为0.812 N。需要最优表面质量时,使表面粗糙度值趋于最小值的工艺参数组合为载液盘转速300 r/min,磁铁转速150 r/min,加工间距0.1 mm,通过20 min抛光后得到了表面粗糙度Sa为26.723 nm的光滑表面。抛光过程中,钛合金抛光所受剪切力τ为0.796 N。结论 Halbach阵列拥有较高的磁场强度和富有空间变化的磁感线,能够使磁流变液中的磁链呈现出更多的姿态变化。根据响应面法优化后的剪切力和表面粗糙度预测模型,预测结果与验证试验结果相差很小,预测模型的准确度与可信度较高。  相似文献   

12.
Surface finishing is one of the most important processes in mould and die making. This process is necessary not only for smoothing the surface of die or mould, but also for removing the surface layer, which has been damaged by the preceding machining process and finally improve the performances and lifetime of moulds to a large extent. It has been reported that between 30% and 40% of the total time required to manufacture a die or mold is spent on finishing operations, most of which are performed by skilled workers employing traditional techniques. At present, key problems in mould and die finishing technology can improve the finishing efficiency, consistency and quality at reduced costs. A new and high efficiency unconventional finishing technology, pulse electrochemical finishing was introduced. Experiments were done in neutral nitrate electrolytes. The influence of electrolyte composition, intereletrode gap, finishing time, flow quality, current density, compositions of steel materials and pulse parameters on the resulting surface finishing was investigated. Results indicate that pulse parameters have important influence on operations finishing and the proper selection of pulse parameters can lead to both good smoothing efficiency and surface quality at low costs.  相似文献   

13.
介绍了自由磨粒磁力研磨光整加工机理,在3_TPT五自由度并联机床上对模具型腔进行磁力研磨光整加工试验,研究了磁感应强度、研磨间隙、磨料粒度以及研具表面形状对模具型腔进行磁力研磨光整加工的影响及其变化规律。  相似文献   

14.
Contents     
The attempts of researchers to obtain accurate and high-quality surfaces have led to the invention of new methods of finishing. Magnetic abrasive finishing (MAF) is a relatively new type in which magnetic field is used to control the abrasive tools. Surfaces of moulds, for instance, are among those which require very high-surface smoothness. Usually, this type of part has freeform surfaces. In this study, the effect of magnetic abrasive process parameters on finishing freeform surfaces of aluminium parts has been examined. This method was achieved through a combination of the magnetic abrasive process and computer numerical control. The use of a simple hemisphere to be joined on the flat area of the magnet as well as spark machining for forming a sphere at the end of a magnet were performed during experimentation. Gap, rotational speed of the machining head, amount of abrasive powder and feed rate were among the parameters that were tested in experiments. The design of experiments is based on the response surface methodology. Significant parameters and the regression equations governing the process were also determined. The impact of intensity of the magnetic field was obtained using MAXWELL finite element software. In the MAF process, magnetic abrasives play the role of cutting tools. However, the magnetic abrasives are not easily available as these are produced by special techniques such as sintering method, adhesive based, plasma based or gel based. This study presents the basic polishing characteristics of the magnetic abrasives produced by the mechanical alloying process. After the mechanical alloying process fine magnetic abrasives are obtained, in which the abrasive particles adhere to the base metal matrix without any bonding material. In this study, investigation was performed only on the convex area of workpiece. Optimum parameters are gap size of 0.5?mm, feed rate of 10?mm?min?1 rotational speed of 2100?rev?min?1 and powder amount of 1.75?g. To help understand the effectiveness of the MAF process, scanning electron microscopy and atomic force microscopy of the machined surfaces have been carried out.  相似文献   

15.
A new precision finishing process for nanofinishing of 3D surfaces using ball end MR finishing tool is developed. The newly developed finishing process is used to finish ferromagnetic as well as nonmagnetic materials of 3D shapes using specially prepared magnetorheological polishing (MRP) fluid. The existing MR finishing devices and methods are likely to incapable of finish 3D intricate surfaces such as grooves in workpiece or complex in-depth profiles in the mold due to restriction on relative movement of finishing medium and workpiece. In this newly developed finishing device, the ball end MR finishing tool is used for finishing different kinds of 3D surfaces, as there is no limitation on relative movement of finishing medium and workpiece. It can finish the work surfaces similarly as the machining of 3D surfaces by CNC ball end milling cutter and open a new era of its applications in future. The developed process may have its potential applications in aerospace, automotive and molds manufacturing industries. A computer controlled experimental setup is designed and manufactured to study the process characteristics and performance. The magnetostatic simulations were done on ferromagnetic as well as nonferromagnetic materials of 3D surfaces to observe the ball end shape of magnetic field at the tip of the MR finishing tool. The experiments were performed on flat EN31 and groove surface of copper workpieces in the developed MR finishing setup to study the effect of finishing time on final surface roughness.  相似文献   

16.
提出了旋转磁场磁性磨粒光整加工新工艺,进行了旋转磁场磁性磨粒光整加工内孔时磁路的结构设计,建立了数学模型,进行了磁路的数值模拟,确定了磁极合理的布置形式,以球形磁性磨粒为加工介质进行了实验研究,得到了磁极布置形式和回转速度对加工效果的影响曲线.研究表明磁场发生装置能够产生足够大的磁场强度实现内孔表面的光整加工,且磁极成90°布置时,光整加工效果最好.磁极的回转速度也影响加工效果,速度越高,加工效果越好.  相似文献   

17.
针对国内在磁力研磨加工机理领域上研究的不足,论文在磁力研磨加工原理的基础上,利用建立磁场图的方法,对磁力研磨加工中磁性磨料所受的磁场力进行了理论上的分析和推导,结果表明磁场对磁性磨料的作用力大小与磁性磨料的粒度、磁性磨料的磁化率、加工区域的磁场强度、磁通集中情况以及磁场梯度有着重大的关系。  相似文献   

18.
A scheme to finish external curved surfaces, by imparting rotation while the abrasive-mixed magnetorheological fluid (or abrasive-mixed MR fluid) is pushed up and down, is presented in this paper. Since the relative motions resemble those present in conventional honing, the proposed method is named as ‘Magnetorheological Abrasive Honing’ (MRAH). This paper outlines the design and development of magnetorheological abrasive honing setup. A DC electromagnet with cylindrical pole faces is used and measurement for magnetic flux density is done. Experiments are conducted with aluminum and austenitic stainless steel workpieces to understand the effect of magnetic field. Effect of initial roughness, workpiece rotation and process duration on finishing was investigated with ground austenitic stainless steel workpieces. It is observed that the improvement in finish is better for rougher surface and higher rotation speed of workpiece and a reduction in roughness is consistent with process duration.  相似文献   

19.
李文龙  陈燕  吕旖旎  程淼  赵杨 《表面技术》2020,49(5):354-359
目的提高磁粒研磨法加工管件内表面的质量及加工效率,探究磁粒研磨法中不同形状的聚磁盘对管件内表面的影响。方法利用Maxwell软件对轴向开槽聚磁盘与不开槽聚磁盘进行磁场强度模拟和磁感应线模拟,分析不同形状的聚磁盘的磁感应强度变化和磁场强度分布。利用磁粒研磨法对工件内表面进行研磨加工,对研磨之后的工件表面粗糙度进行测量,并对微观形貌进行观察。结果在磁粒研磨工具转速为500 r/min、加工时长为15 min的条件下,聚磁盘为未开槽时,表面粗糙度由原始的0.509μm降至0.127μm,表面粗糙度改善率(%ΔRa)为75.04%;当聚磁盘为轴向开槽时,工件表面粗糙度由原始的0.553μm降至0.097μm,工件的表面粗糙度改善率(%ΔRa)为82.45%。结论在相同的加工条件下,当聚磁盘轴向开槽时,相对于轴向不开槽的聚磁盘,磁粒研磨管件内表面的研磨效果更好,表面粗糙度改善率和研磨效率更高。  相似文献   

20.
目的提高磁性磨具表面光整加工技术对30CrMnSi高强度结构钢表面的加工效率,解决以往永磁式磁性磨具光整加工中磁场强度弱、磁能利用率低的问题。方法首先对30CrMnSi导磁工件的材料去除机理进行分析,探讨了磁感应强度B对工件材料去除的重要性。然后基于海尔贝克阵列(Halbach Array)进行了磁场的设计,通过理论计算和仿真分析,确定了永磁单元尺寸和磁场布置方案。最后以自制粘接性磁性磨料,对30CrMnSi板材进行单因素光整加工实验。结果根据磁场计算和仿真结果,确定了Halbach Array永磁阵列两个周期为最佳的磁场布置方案,并获得了理想的磁场强度和最佳的磁场分布。对30CrMnSi板材的加工实验表明,粗糙度下降百分比(%ΔRa)随着磁极转速和磨粒目数的增大而增大;磁性磨料中铁磁相与磨粒相质量比为3∶1、磁极转速为500 r/min、磨粒目数为240目时,加工效果最好,获得了Ra=0.129μm的表面,粗糙度最大下降百分比为90.74%。结论使用HalbachArray的方法对永磁场进行设计,可以增大加工区域的磁场强度并改善磁场分布,从而提高对30CrMnSi高强度结构钢表面的加工效率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号