首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
A fully integrated, phase-locked loop (PLL) clock generator/phase aligner for the POWER3 microprocessor has been designed using a 2.5-V, 0.40-μm digital CMOS6S process. The PLL design supports multiple integer and noninteger frequency multiplication factors for both the processor clock and an L2 cache clock. The fully differential delay-interpolating voltage-controlled oscillator (VCO) is tunable over a frequency range determined by programmable frequency limit settings, enhancing yield and application flexibility. PLL lock range for the maximum VCO frequency range settings is 340-612 MHz. The charge-pump current is programmable for additional control of the PLL loop dynamics. A differential on-chip loop filter with common-mode correction improves noise rejection. Cycle-cycle jitter measurements with the microprocessor actively executing instructions were 10.0 ps rms, 80 ps peak to peak (P-P) measured from the clock tree. Cycle-cycle jitter measured for the processor in a reset state with the clock tree active was 8.4 ps rms, 62 ps P-P. PLL area is 1040×640 μm2. Power dissipation is <100 mW  相似文献   

2.
A multiplying delay-locked loop (MDLL) for high-speed on-chip clock generation that overcomes the drawbacks of phase-locked loops (PLLs) such as jitter accumulation, high sensitivity to supply, and substrate noise is described. The MDLL design removes such drawbacks while maintaining the advantages of a PLL for multirate frequency multiplication. This design also uses a supply regulator and filter to further reduce on-chip jitter generation. The MDLL, implemented in 0.18-/spl mu/m CMOS technology, occupies a total active area of 0.05 mm/sup 2/ and has a speed range of 200 MHz to 2 GHz with selectable multiplication ratios of M=4, 5, 8, 10. The complete synthesizer, including the output clock buffers, dissipates 12 mW from a 1.8-V supply at 2.0 GHz. This MDLL architecture is used as a clock multiplier integrated on a single chip for a 72/spl times/72 STS-1 grooming switch and has a jitter of 1.73 ps (rms) and 13.1 ps (pk-pk).  相似文献   

3.
徐壮  俞慧月  张辉  林霞 《半导体技术》2011,36(12):953-956
基于整数分频锁相环结构实现的时钟发生器,该时钟发生器采用低功耗、低抖动技术,在SMIC 65 nm CMOS工艺上实现。电路使用1.2 V单一电源电压,并在片上集成了环路滤波器。其中,振荡器为电流控制、全差分结构的五级环形振荡器。该信号发生器可以产生的时钟频率范围为12.5~800MHz,工作在800 MHz时所需的功耗为1.54 mW,输出时钟的周期抖动为:pk-pk=75 ps,rms=8.6 ps;Cycle-to-Cycle抖动为:pk-pk=132 ps,rms=14.1 ps。电路的面积为84μm2。  相似文献   

4.
This paper describes a low-power microprocessor clock generator based upon a phase-locked loop (PLL). This PLL is fully integrated onto a 2.2-million transistors microprocessor in a 0.35-μm triple-metal CMOS process without the need for external components. It operates from a supply voltage down to 1 V at a VCO frequency of 320 MHz. The PLL power consumption is lower than 1.2 mW at 1.35 V for the same frequency. The maximum measured cycle-to-cycle jitter is ±150 ps with a square wave superposed to the supply voltage with a peak-to-peak amplitude of 200 mV and rise/fall time of about 30 ps. The input frequency is 3.68 MHz and the PLL internal frequency ranges from 176 MHz up to 574 MHz, which correspond to a multiplication factor of about 100  相似文献   

5.
Gu  Z. Thiede  A. 《Electronics letters》2004,40(25):1572-1574
The design of a fully monolithic integrated 10 GHz full-rate clock and data recovery (CDR) circuit in 0.18 /spl mu/m digital CMOS technology, which employs an injection phase-locked loop (PLL) technique is presented. The CDR operating without the external reference exhibits a capture range of 200 MHz while consuming 205 mA current from 1.8 V supply including the output buffer. The recovered clock signal with 250 mV/sub pp/ pseudorandom bit Sequence input data of length 2/sup 31/-1 exhibits 7.9 ps of peak-to-peak (p-p) and 1.1 ps of root-mean-square (RMS) jitter. The measured clock phase noise at 1 MHz offset is approximately -109 dBc/Hz.  相似文献   

6.
This paper describes a phase-locked loop (PLL) based frequency synthesizer. The voltage-controlled oscillator (VCO) utilizing a ring of single-ended current-steering amplifiers (CSA) provides low noise, wide operating frequencies, and operation over a wide range of power supply voltage. A programmable charge pump circuit automatically configures the loop gain and optimizes it over the whole frequency range. The measured PLL frequency ranges are 0.3-165 MHz and 0.3-100 MHz at 5 V and 3 V supplies, respectively (the VCO frequency is twice PLL output). The peak-to-peak jitter is 81 ps (13 ps rms) at 100 MHz. The chip is fabricated with a standard 0.8-μm n-well CMOS process  相似文献   

7.
A low jitter,low spur multiphase phase-locked loop(PLL) for an impulse radio ultra-wideband(IR-UWB) receiver is presented.The PLL is based on a ring oscillator in order to simultaneously meet the jitter requirement, low power consumption and multiphase clock output.In this design,a noise and matching improved voltage-controlled oscillator(VCO) is devised to enhance the timing accuracy and phase noise performance of multiphase clocks.By good matching achieved in the charge pump and careful choice of the l...  相似文献   

8.
A method to minimize the supply sensitivity of a CMOS ring oscillator is proposed through joint biasing of the supply and the control voltage. The technique can supplement a number of common supply rejection techniques and can be exploited to compensate for the noise coupling caused by the parasitic capacitance in the loop filter of a phase-locked loop (PLL). The proposed CMOS ring oscillator is designed and implemented with a charge-pump based PLL in 65-nm technology to demonstrate the robustness against the supply fluctuation. Taking advantage of the negative static supply sensitivity of the ring oscillator with proper combination of the bias voltages, the rms jitter of the 5.12-GHz output clock is reduced from 6.41 ps to 2.38 ps while subject to supply noise at 90 MHz.   相似文献   

9.
本文设计了一款用于USB2.0时钟发生作用的低抖动、低功耗电荷泵式锁相环电路。其电路结构包含鉴频/鉴相器、电荷泵、环路滤波器、压控振荡器和分频器。电路设计是基于CSM0.18μmCMOS工艺,经HSPICE仿真表明,锁相环输出480MHz时钟的峰峰值抖动仅为5.01ps,功耗仅为8.3mW。  相似文献   

10.
尹海丰  王峰  刘军  毛志刚 《半导体学报》2008,29(8):1511-1516
用90nmCMOS数字工艺设计实现了一个低抖动的时钟锁相环.锁相环不需要"模拟"的电阻和电容,采用金属间的寄生电容作为环路滤波器的电容.测试结果显示,锁相环锁定在1.989GHz时的均方抖动为3.7977ps,周期峰峰值抖动为31.225ps,核心功耗约为9mW.锁相环可稳定输出的频率范围为125MHz到2.7GHz.  相似文献   

11.
用90nmCMOS数字工艺设计实现了一个低抖动的时钟锁相环.锁相环不需要"模拟"的电阻和电容,采用金属间的寄生电容作为环路滤波器的电容.测试结果显示,锁相环锁定在1.989GHz时的均方抖动为3.7977ps,周期峰峰值抖动为31.225ps,核心功耗约为9mW.锁相环可稳定输出的频率范围为125MHz到2.7GHz.  相似文献   

12.
In this paper, a new design of on-chip CMOS voltage regulator, which provides two stable power supplies to charge pump and voltage controlled oscillator (VCO) in charge pump phase-locked loop (PLL), is presented. A power supply noise rejection (PSNR) whose peaking is less than −40 dB is achieved over the entire frequency spectrum for VCO supply. The voltage regulator provides maximum 14 mA current, and static current is about 780 μA at 3.3 V. Based on the proposed voltage regulator, a PLL clock generator has been developed and measured in the AMS 0.35 μm CMOS process. Operating at 160 MHz, a period jitter of 13.64 ps was measured under a clean power supply, while period jitter became 16.24 ps under a power supply modulated with a 400 mV, 10 kHz square wave.  相似文献   

13.
A loop parameter optimization method for a phase-locked loop (PLL) used in wide area networks (WANs) is proposed as a technique for achieving good jitter characteristics. It is shown that the jitter characteristics of the PLL, especially jitter transfer and jitter generation, depend strongly on the key parameter ζωn (ζ is a damping factor and ωn is the natural angular frequency of the PLL), and that the optimization focusing on the ωn dependence of the jitter characteristics make it possible to comprehensively determine loop parameters and loop filter constants for a PLL that will fully comply with ITU-T jitter specifications. Using the optimization method with the low-jitter circuit design technique, a low-jitter and low-power 2.5-Gb/s optical receiver IC integrated with a limiting amplifier, clock and data recovery (CDR), and demultiplexer (DEMUX) is fabricated using 0.5-μm Si bipolar technology (fT = 40 GHz). The jitter characteristics of the IC meet all three types of jitter specifications given in ITU-T recommendation G.783. In particular, the measured jitter generation is 3.2 ps rms, which is lower than that of an IC integrated with only a CDR in our previous work. In addition, the pull-in range of the PLL is 50 MHz and the power consumption of the IC is only 0.68 W (limiting amplifier: 0.2 W, CDR (PLL): 0.3 W, DEMUX: 0.18 W) at a supply voltage of -3.3 V and only 0.35 W at a supply voltage of -2.5 V (without output buffers)  相似文献   

14.
An all static CMOS ADPLL fabricated in 65 nm digital CMOS SOI technology has a fully programmable proportional-integral-differential (PID) loop filter and features a third order delta sigma modulator. The DCO is a three stage, static inverter based ring oscillator programmable in 768 frequency steps. The ADPLL lock range is 500 MHz to 8 GHz at 1.3 V and 25degC, and 90 MHz to 1.2 GHz at 0.5 V and 100degC. The IC dissipates 8 mW/GHz at 1.2 V and 1.6 mW/GHz at 0.5 V. The synthesized 4 GHz clock has a period jitter of 0.7 ps rms, and long term jitter of 6 ps rms. The phase noise under nominal operating conditions is 112 dBc/Hz measured at a 10 MHz offset from a 4 GHz center frequency. The total circuit area is 200 mum 150 mum.  相似文献   

15.
基于TSMC 180 nm工艺设计并流片测试了一款用于高能物理实验的电子读出系统的低噪声、低功耗锁相环芯片。该芯片主要由鉴频鉴相器、电荷泵、环路滤波器、压控振荡器和分频器等子模块组成,在锁相环电荷泵模块中,使用共源共栅电流镜结构精准镜像电流以减小电流失配和用运放钳位电压进一步减小相位噪声。测试结果表明,该锁相环芯片在1.8 V电源电压、输入50 MHz参考时钟条件下,可稳定输出200 MHz的差分时钟信号,时钟均方根抖动为2.26 ps(0.45 mUI),相位噪声在1 MHz频偏处为-105.83 dBc/Hz。芯片整体功耗实测为23.4 mW,锁相环核心功耗为2.02 mW。  相似文献   

16.
低抖动时钟锁相环设计   总被引:1,自引:0,他引:1  
采用SMIC0.13μm CMOS工艺,设计实现了一个基于自偏置技术的低抖动时钟锁相环。锁相环核心功耗约为8.4~16.8mW,可稳定输出的频率范围为25MHz~2.4GHz,测试结果显示,锁相环锁定在1.36GHz时输出时钟的均方抖动为2.82ps,周期峰峰值抖动为21.34ps。  相似文献   

17.
A 250-622 MHz clock buffer has been developed, using a two-loop architecture: a delay-locked loop (DLL) for deskew, and a frequency-locked loop (FLL) for reference frequency supply to the DLL. The DLL incorporates a current-mode phase detector which utilizes a flip-flop metastability to detect a phase difference in the order of 20 ps. A measured jitter is suppressed to less than 40 ps RMS over the operating frequency range. A DLL acquisition time of 150 ns typical is simulated at 400 MHz. A 0.4-μm CMOS technology is used to fabricate the chip  相似文献   

18.
A semidigital dual delay-locked loop   总被引:1,自引:0,他引:1  
This paper describes a dual delay-locked loop architecture which achieves low jitter, unlimited (modulo 2π) phase shift, and large operating range. The architecture employs a core loop to generate coarsely spaced clocks, which are then used by a peripheral loop to generate the main system clock through phase interpolation. The design of an experimental prototype in a 0.8-μm CMOS technology is described. The prototype achieves an operating range of 80 kHz-400 MHz. At 250 MHz, its peak-to-peak jitter with quiescent supply is 68 ps, and its jitter supply sensitivity is 0.4 ps/mV  相似文献   

19.
This paper describes a wide-range clock generation phase-locked loop (PLL) incorporating several features that make it suitable for integration in highly scaled processes. A fully differential supply regulated tuning scheme is used to combat power supply noise. The charge pump uses a resistor rather than an active current source to define the pumping current in order to reduce the charge pump flicker noise. Fabricated in a 0.18-mum CMOS process, the PLL occupies 0.15 mm2 die area and achieves a frequency range of 0.5 to 2.5 GHz. When operating at 2.4 GHz, the power consumption is 14 mA from a 1.8-V supply while the jitter is 2.36 ps rms  相似文献   

20.
This paper describes an I/O scheme for use in a high-speed bus which eliminates setup and hold time requirements between clock and data by using an oversampling method. The I/O circuit uses a low jitter phase-locked loop (PLL) which suppresses the effect of supply noise. Measured results show peak-to-peak jitter of 150 ps and r.m.s. jitter of 15.7 ps on the clock line. Two experimental chips with 4-pin interface have been fabricated with a 0.6 μm CMOS technology, which exhibits the bandwidth of 960 Mb/s per pin  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号