首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The combined effects of postdetection diversity reception and concatenated channel coding are experimentally evaluated for π/4-shift QDPSK signal transmission over a Rayleigh fading channel. Two-branch postdetection diversity reception using maximal ratio combining (MRC) and selection combining (SC) are considered. The concatenated channel coding uses the Reed-Solomon (15,k) code of GP(2 4) as the outer code and the BCH (7,4) code as the inner code (k=9,11,13). Measured bit error rate (BER) performance results are presented under cochannel interference (CCI) and multipath channel delay spread, as well as additive white Gaussian noise (AWGN)  相似文献   

2.
Postdetection diversity reception weights and combines all the detector outputs before symbol decision to combat the effects of multipath fading. A theoretical analysis of a postdetection optimal diversity combiner that can minimize the symbol error probability for differential phase shift keying (DPSK) differential detection in the presence of multiplicative Rayleigh fading, and co-channel interference (CCI) is presented. The effect of unequal average powers among diversity branches is taken into account. It is shown that the postdetection maximal-ratio combiner (MRC) described previously by the author is not optimal unless all branches have the same average power. It is also found that the combiner optimized for the effect of CCI (fading induced random FM noise) should weight each branch detector output in inverse proportion to the average CCI power (desired signal power). Assuming two-branch diversity, calculated BER (bit-error-rate) performance of π/4-shift QDPSK due to AWGN, CCI, and random FM is presented. In addition, the BER due to multipath channel delay spread (which is not treated in the theoretical analysis) is also computed to find the optimal combiner  相似文献   

3.
In this letter, we present closed. form expressions for the exact average symbol-error rate (SER) of M-ary modulations with multichannel reception over Nakagami-m fading channels. The derived expressions extend already available results for the nondiversity case, to maximal-ratio combining-(MRC) and postdetection equal-gain combining (EGC) diversity systems. The average SERs are given in terms of Lauricella's multivariate hypergeometric function F/sub D//sup (n)/. This function exhibits a finite integral representation that can be used for fast and accurate numerical computation of the derived expressions.  相似文献   

4.
Postdetection diversity is attractive for narrowband digital FM signal reception because the cophasing function, which may be difficult to realize in a fast Rayleigh fading environment, is not required. The combining scheme evaluated here is to weight each frequency demodulator (FD) output in proportion to the νth power of the received signal envelope of that branch. Maximum diversity improvement can be obtained with ν=2 (this combiner is referred to as a postdetection maximal ratio chamber (MRC)). Experimental results are presented on postdetection diversity reception in the Gaussian minimum shift keying (GMSK) signal transmission system. Diversity combining and FD-decision algorithms (decision feedback equalizer (DFE) and maximum-likelihood sequence estimator (MLSE)) are performed by software on a computer using the data of the sampled FD output and received signal envelope obtained from a laboratory transmission system. It is shown that the MRC can attain about a 1-dB larger diversity gain than the selection combiner (SC) when two-branch diversity is used. The degradations of two-branch diversity improvement caused by the differences between demodulator sensitivities and between received signal envelope detector gains are evaluated  相似文献   

5.
The bit error rate (BER) performance of 16-128 kb/s Nyquist raised-cosine filtered quaternary differential phase-shift keying (RC-QDPSK) signal transmission was experimentally investigated. Two-branch postdetection selection diversity reception was employed. Measured results are presented for the BER performance due to additive white Gaussian noise (AWGN), cochannel interference, and multipath channel delay spread. Field BER measurements were also conducted at a carrier frequency of 1.45 GHz in an area characterized by high-rise buildings and in an area surrounded by mountains. The results show that postdetection selection diversity is a simple yet powerful technique to improve the BER performance in fading mobile radio channels  相似文献   

6.
The diversity gain degradations due to fading correlation and unequal average power are investigated for practical, two-branch postdetection selection diversity reception. The average bit error rate (BER) of π/4-shift QDPSK is theoretically analyzed taking into account additive white Gaussian noise (AWGN), cochannel interference, and multipath channel delay spread; exact diversity gain degradations are calculated. Simple and useful approximate expressions for the gain degradations are also presented  相似文献   

7.
We propose a postdetection phase combining (PC) scheme for the two branch diversity reception of differential phase shift keying (DPSK) over multipath fading channels. The receiver has a differential phase detector (DPD) in each diversity branch, and the combiner weights each detector output in proportion to the vth power of the signal envelope at the detector's input. For π/4-shift QDPSK over frequency-flat Rayleigh fading channels, we find via computer simulation that the optimum weight factor is v=2, and that our simple, practical combining scheme performs almost as well as postdetection maximal ratio combining (MRC). We demonstrate similar relative performances for frequency-selective fading channels and for channels with co-channel interference (CCI)  相似文献   

8.
Presents predetection and postdetection combining schemes for selection diversity reception with multiple antennas for MM-wave indoor radio channels. For those combining schemes, a reduction in complexity is achieved by limiting the number of combined signals to small values and by increasing the number of received signals. Bit error rate (BER) performance of binary phase shift keying (BPSK) with predetection combining of selected signals (CSS) and BER performance of differential BPSK with postdetection CSS are analyzed for slow fading and Rayleigh-distributed envelope statistics. Predetection maximal ratio combining of signals that comes from a single group or several groups of diversity channels as well as postdetection combining of received signals for groups of channels are considered. In comparing predetection combining with groups (PCG) and predetection combining of the best signals (PCB), we observe that the required SNR for achieving a certain BER is approximatively the same (with PCG having a slight advantage of 0.5 dB) for a given number, N, of diversity channels and L combined signals. Furthermore. PCG is equivalent to PCB for L=N since both techniques then correspond to conventional predetection maximal ratio combining (MRC), PCG and PCB are also equivalent when L=1 as both schemes then correspond to conventional selection combining. A small degradation of approximately 2 dB in the required SNR is observed when postdetection diversity reception with groups (PDG) is used instead of PCG. For L=N, PDG reduces to post detection MRC. The PDG technique is considered more suitable than PCB or PCG for MM-indoor wireless systems  相似文献   

9.
This paper derives closed-form formulas for two integrals involving the generalized Marcum Q-function with linear arguments Q/sub m/(a/spl radic/x,b/spl radic/x). These integrals are known to arise in the analysis of multichannel diversity reception of differentially coherent and noncoherent digital communications in Rayleigh and Nakagami-m channels. Applications of the results for efficient performance evaluation of the average bit error rates of dual branch selection diversity combining and postdetection equal gain combining over independent and correlated fading channels are also presented.  相似文献   

10.
In this letter, we study the asymptotic performance of hybrid-selection/maximal-ratio combining (HS/MRC) and postdetection HS/equal-gain combining (HS/EGC) over generalized fading channels for large average signal-to-noise ratios (ASNRs). By evaluating the asymptotic moment generating function of the HS/MRC output SNR at high ASNR, we derive the diversity and coding gains for HS/MRC for a large class of modulation formats and versatile fading conditions, including different types of fading channels and nonidentical SNR statistics across diversity branches. Our analytical results reveal that the diversity gains of HS/MRC and HS/EGC are equivalent to that of MRC, and the difference in the coding gains for different modulation formats is manifested in terms of a modulation factor defined in this letter. Some new analytical results about effects of the number of combined branches for HS/MRC and noncoherent combining loss of HS/EGC are also provided.  相似文献   

11.
This paper analyzes the average bit error probability (BEP) of the differential binary and quaternary phase-shift keying (DBPSK and DQPSK respectively) with multiple-input multiple-output (MIMO) systems employing postdetection equal gain combining (MIMO EGC) diversity reception over Rayleigh fading channels. Finite closed-form expressions for the average BEP of DBPSK and DQPSK are presented. Two approaches are introduced to analyze the error rate of DQPSK. The proposed structure for the differential phase-shift keying (DPSK) with MIMO EGC provides a reduced-complexity and low-cost receiver for MIMO systems compared to the coherent phase-shift keying system (PSK) with MIMO employing maximal ratio combining (MIMO MRC) diversity reception. Finally, a useful procedure for computing the associated Legendre functions of the second kind with half-odd-integer order and arbitrarily degree is presented.  相似文献   

12.
采用两条支路分集接收的相关瑞利衰落信道容量   总被引:5,自引:0,他引:5  
李光球 《电子学报》2003,31(7):1018-1021
本文研究采用两条支路最大比合并(MRC)或选择合并(SC)分集接收的相关瑞利衰落信道理论容量推导恒定发射功率自适应M进制正交幅度调制(M-QAM)的频谱效率,并将它们与独立同分布瑞利信道理论容量进行比较,其结果对收发信机之间无视距分量路径、接收机上分集天线之间的距离小于半个波长的无线通信系统设计具有指导作用.  相似文献   

13.
Adachi  F. Ohno  K. 《Electronics letters》1991,27(8):629-631
BER performance owing to random FM noise is investigated for QDPSK with postdetection selection diversity reception in a multiplicative Rayleigh fading environment. Experimental results for 16 Kbit/s QDPSK using a Rayleigh fading simulator are reported. It is shown that diversity reception can significantly reduce the impact of random FM noise.<>  相似文献   

14.
An analysis is presented of postdetection diversity using both selection combining and general combining for the reception of a binary digital FM signal in a Rayleigh fading environment. Noncoherent (differential and frequency) demodulation is assumed. In the general combiner, the output of each branch demodulator is weighted by the νth power of the demodulator input signal envelope (weighting factor). The optimum weighting factor is found to be ν=2. It is shown that postdetection general combiners using weighting factors of ν=1 and 2 correspond to predetection equal-gain and maximal-ratio combiners, respectively. A closed-form solution and a fairly simple expression are derived for the average bit error rate. Numerical calculations show that the postdetection two-branch diversity gain is only about 0.9 dB inferior to the predetection system when minimum shift keying (MSK) is used  相似文献   

15.
This paper examines the asymptotic (M/spl rarr//spl infin/) performance of M-ary frequency-shift keying (M-FSK) in multi-channels, or multiple frequency-nonselective, slowly fading channels, with coding, side information, and diversity reception. In particular, Reed-Solomon (RS) coding is considered in conjunction with the ratio-threshold test (RTT), which generates side information regarding the reliability of received symbols. The asymptotic performance of orthogonal signaling in multichannels with maximal ratio combining (MRC), postdetection equal gain combining (EGC), hybrid selection combining (H-SC), and selection combining (SC) is derived for an arbitrary statistical fading model and diversity order. The derivations reveal that coherent and noncoherent implementations of diversity combining schemes yield the same performance asymptotically. In addition, the asymptotic results are evaluated assuming a Nakagami-m fading model, and the effect of fading severity, diversity order, code rate, and side information upon the performance of the various diversity combiners is investigated. The minimum signal-to-noise ratio (SNR) required to achieve arbitrarily reliable or error-free communication, as well as the associated optimal RS code rate, are determined for various cases.  相似文献   

16.
Mobile reception of digital terrestrial broadcasting carrying an 18-Mb/s digital HDTV signals is achieved. The effect of diversity reception in moving automobiles for a 64 quadrature amplitude modulation-orthogonal frequency division multiplexing (QAM-OFDM) signal is investigated by prototype hardware. There are two methods for diversity reception of OFDM signals. The first is the Doppler compensation directivity control system. For this method, high-performance on-glass antennas and new diversity reception systems for OFDM reception have been developed to verify HDTV service availability in mobile reception environments. Novel horizontally polarized on-glass antennas suitable for DTV were developed. The antenna elements were printed on the inside surface of the rear window glass of a passenger van. OFDM signals received by the four antenna elements were weighted and combined using maximal ratio combining (MRC). The experiments were conducted in urban areas and they showed that employing diversity techniques would make HDTV mobile reception possible in many areas. The other method is post-FFT diversity. In the receiver, MRC is performed after an FFT operation on each branch signal. Experimental results show that accurate HDTV mobile reception can be achieved by using a four-branch MRC system. Also, the minimum usable electric field strength could be reduced compared with that of a single dipole antenna.  相似文献   

17.
Spatial diversity is an attractive technology to cope with the fading channel encountered in mobile communications. This paper presents novel closed analytical expressions of the bit-error rate (BER) achievable in a coherent binary phase-shift-keying (CBPSK) direct-sequence code-division multiple-access (DS/CDMA) system for any power delay profile and for either postdetection selection or maximal ratio combining (MRC). In particular, expressions for the cutoff rate R o and for its related parameter D are also formulated in order to assess the system performance under the consideration of some channel coding schemes. Finally, an exemplary study is carried out in order to illustrate the behavior of a realistic space-diversity code-division multiple-access (CDMA) system according to the analytical expressions that have been derived  相似文献   

18.
Outage probability of diversity systems over generalized fading channels   总被引:1,自引:0,他引:1  
Outage probability is an important performance measure of communication systems operating over fading channels. Relying on a simple and accurate algorithm for the numerical inversion of the Laplace transforms of cumulative distribution functions, we develop a moment generating function-based numerical technique for the outage probability evaluation of maximal-ratio combining (MRC) and postdetection equal-gain combining (EGC) in generalized fading channels for which the fading in each diversity path need not be independent, identically distributed, nor even distributed according to the same family of distributions. The method is then extended to coherent EGC but only for the case of Nakagami-m fading channels. The mathematical formalism is illustrated by applying the method to some selected numerical examples of interest showing the impact of the power delay profile and the fading correlation on the outage probability of MRC and EGC systems.  相似文献   

19.
Bit error rate (BER) is analyzed theoretically for diversity reception in the quasi-static Rayleigh fading environment with noise and co-channel interference conditions. The analysis is based upon the canonic receiver model with postdetection combining. This model presents exact BER formulas with respect to carrier-to-noise ratio (CNR) and carrier-to-interference ratio (CIR) for both coherent and differential detections (CD and DD) of binary angle modulations. In the case of CD, an exact and explicit BER formula for the maximal-ratio combining diversity (MRC) is obtained. On the other hand, in the case of DD, an explicit BER formula for the equal-gain combining diversity (EGC) is obtained. These results are applied to derive an approximate BER formula of M-ary (M = 4, 8, 16) angle modulations. Phase-shift keying (PSK) and continuous-phase frequency-shift keying (CP-FSK) are demonstrated as examples of angle modulations.  相似文献   

20.
For space diversity, it is shown that it is related to maximal-ratio combining (MRC). Unlike MRC, it allows the receiver to collect diversity signals without gain adjustments or cophasing. Some worst-case bit error rate (BER) simulation results that show the influence of time delay spread, Doppler, shadow loss, and diversity for a seven-cell cluster using quadrature modulation are presented  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号