首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hybrid Energy System (HES) is mainly based on proton exchange membrane fuel cell (PEMFC) technology, which is supplied by a fuel reforming process for hydrogen production, starting from natural gas. The exhaust heat from the PEMFC is evacuated to a thermal storage tank (TST) mixed with water provided by geothermal source, The bath (Hammam) Sidi Aïssa 47 °C, TST hot water maintained to 47 °C is used in a fan coil for canteen heating in Si Ben Salah School located in Saïda (NW of Algeria). Cooling is assured by the air conditioning sub-system made of a fan coil and heat pump using cool water tank. The experimental analysis of the air conditioning device is done for canteen application for cooling and heating modes. The feasibility study shows that using the geothermal sources located in Northern Algeria and low temperature PEMFC for air conditioning is a promising solution.  相似文献   

2.
The geothermal resources in Algeria are of low-enthalpy type. Most of these geothermal resources are located in the northeastern of the country. There are more than 240 thermal springs in Algeria. Three geothermal zones have been delineated according to some geological and thermal considerations: (1) The Tlemcenian dolomites in the northwestern part of Algeria, (2) carbonate formations in the northeastern part of Algeria and (3) the sandstone Albian reservoir in the Sahara (south of Algeria). The northeastern part of Algeria is geothermally very interesting. Two conceptual geothermal models are presented, concerning the northern and southern part of Algeria. Application of gas geothermometry to northeastern Algerian gases suggests that the reservoir temperature is around 198 °C. The quartz geothermometer when applied to thermal springs gave reservoir temperature estimates of about 120 °C. The thermal waters are currently used in balneology and in a few experimental direct uses (greenhouses and space heating). The total heat discharge from the main springs and existing wells is approximately 642 MW. The total installed capacity from producing wells and thermal springs is around 900 MW.  相似文献   

3.
The low-enthalpy geothermal system at Punta Banda (NW Baja California Peninsula, Mexico) has been studied because it might provide heat to future desalination plants in the city of Ensenada. Utilization of subaerial, intertidal and submarine hot springs is evaluated based on geochemical and geophysical data. The results of the geochemical studies show that the geothermal fluids have a major meteoric water component because seawater is not present at the subaerial springs and hot wells. The highest estimated reservoir temperature (140 °C) calculated using a silica geothermometer corresponds to the Agua Caliente intertidal manifestation, a promising area also identified by geophysics. Geothermometric calculations applied to the computed composition of the thermal end member yield a reservoir temperature of 137 °C. Cl/B ratios indicate that the thermal fluids discharged by the intertidal vents and subaerial springs are similar, but they differ from those of submarine vents. Geoelectrical models depict an anomalous conductive trend from the La Jolla well to the Agua Caliente manifestation, suggesting the presence of a fault that allows upflow of hot water from depth. Lastly, integration of geochemical and geophysical data identified the best site for future exploration drilling at Punta Banda.  相似文献   

4.
In this work, a new model for producing hydrogen from a low enthalpy geothermal source was presented. Thermal energy from geothermal sources can be converted into electric power by using thermoelectric modules instead of Organic Rankine Cycle (ORC) machines, especially for low geothermal temperatures. This electrical energy uses the water electrolysis process to produce hydrogen. Simulation and experiments for the thermoelectric module in this system were undertaken to assess the efficiency of these models. TRNSYS software is used to simulate the system in Hammam Righa spa, the temperature of this spring is 70 °C. Obtained results reveal that in hammam righa spa in Algeria, 0.5652 Kg hydrogen per square meter of thermoelectric generator (TEG) can be produced in one year.  相似文献   

5.
6.
The geothermal resources discovered in India consist of warm/hot water systems. Medium-temperature waters and reversal of temperature at depth were observed in Puga, Manikaran and the West Coast geothermal areas after exploratory drilling. Such resources can be utilized only for non-electrical applications after detailed technical—economic feasibility studies. The presence of medium-temperature (90–140°C) springs in the cold, remote and steep Himalayan terrains and of lower temperature springs (100°C) in the hot and variable climate of the Peninsular and Coastal regions further restrict full utilization of these resources, with the exception of Cambay, West Coast and Tatapani—Jhor areas. After careful study a list of direct utilizations is proposed for future consideration and the development of the main geothermal resources in India.  相似文献   

7.
John W. Lund 《Geothermics》1996,25(1):103-147
In the United States, natural springs, especially geothermal ones, have gone through three stages of development: (1) use by Indians as a sacred place, (2) development by the early European settlers to emulate the spas of Europe, and (3) finally, as a place of relaxation and fitness. The main reasons that people in the U.S.A. visit geothermal spas today are to improve their health and appearance, to escape stress, and to refresh and revitalize their bodies and minds. Unlike European spas, where medical cures of specific ailments are more important, U.S. spas place more emphasis on exercise, on reducing stress, on lifting depression, and on losing weight. Soaking in hot tubs and pools, as well as in natural primitive hot springs, is a favorite pastime. There are over 115 major geothermal spas in the U.S.A., and many more smaller ones, along with thousands of hot springs. The majority of these are located in the volcanic regions of the western states, but several famous ones still exist in the east. The major spas are estimated to have an annual energy use of 1.53 × 1012 kJ (46 × 103 TOE). Most of the geothermal heat is used in bathing, and very little for space heating.  相似文献   

8.
Self-potential (SP), magnetic and very low frequency electromagnetic (EM-VLF) surveys were carried out in the Seferihisar geothermal area to identify major and minor fault zones and characterize the geothermal system. The SP study provided useful information on the local faults and subsurface fluid flow. The main SP anomalies appear mostly along and near active fault zones in the area of the Cumalı, Tuzla and Doğanbey hot springs. Two of these anomalies near the Tuzla hot springs were further evaluated by SP modelling. Total magnetic field values increase from the Doğanbey to the Cumalı hot springs. Modelling performed on the magnetic data indicates that between these two spring areas are four different regions or units that can be distinguished on the basis of their magnetic susceptibility values. Fraser filtering of EM-VLF data also indicates that there are three significant conductive zones in the regions around the Cumalı, Tuzla and Doğanbey hot springs, and that they lie between important fault systems. The EM-VLF and total (stacked) SP data show that the conductive tilt anomalies obtained by Fraser filtering generally coincide with negative SP areas.According to our geophysical investigations, new exploratory wells should be drilled into the conductive zones located between the Cumalı and Tuzla hot springs. We further recommend that resistivity and magnetotelluric methods be carried out in the area to obtain additional information on the Seferihisar geothermal system.  相似文献   

9.
Chemical geothermometry of hot springs in northern Thailand indicates that many have reservoir temperatures in excess of 150°C and some in excess of 180°C. Measurements of temperatures in abandoned oil wells in Fang Basin indicate geothermal gradients of 70 – 130 mK/m. The high geothermal gradient may be the result of extensional tectonics in northern Thailand, caused indirectly by sea-floor spreading in the Andaman Sea. Relatively high reservoir temperatures and shallow reservoir depths suggest that hot spring areas in northern Thailand may be potential sources of geothermal energy.  相似文献   

10.
Chemical and isotopic analyses of thermal and nonthermal waters and of gases from springs and fumaroles are used to evaluate the geothermal potential of the Tecuamburro Volcano region, Guatemala. Chemically distinct geothermal surface manifestations generally occur in separate hydrogeologic areas within this 400 km2 region: low-pressure fumaroles with temperatures near local boiling occur at 1470 m elevation in a sulfur mine near the summit of Tecuamburro Volcano; non-boiling acid-sulfate hot springs and mud pots are restricted to the Laguna Ixpaco area, about 5 km NNW of the sulfur mine and 350–400 m lower in elevation; steam-heated and thermal-meteoric waters are found on the flanks of Tecuamburro Volcano and several kilometers to the north in the andesitic highland, where the Infernitos fumarole (97°C at 1180 m) is the primary feature; neutral-chloride hot springs discharge along Rio Los Esclavos, principally near Colmenares at 490 m elevation, about 8–10 km SE of Infernitos. Maximum geothermometer temperatures calculated from Colmenares neutral-chloride spring compositions are 180°C, whereas maximum subsurface temperatures based on Laguna Ixpaco gas compositions are 310°C. An exploration core hole drilled to a depth of 808 m about 0.3 km south of Laguna Ixpaco had a bottom-hole temperature of 238°C but did not produce sufficient fluids to confirm or chemically characterize a geothermal reservoir. Hydrogeochemical data combined with regional geologic interpretations indicate that there are probably two hydrothermal-convection systems, which are separated by a major NW-trending structural boundary, the Ixpaco fault. One system with reservoir temperatures near 300°C lies beneath Tecuamburro Volcano and consists of a large vapor zone that feeds steam to the Laguna Ixpaco area, with underlying hot water that flows laterally to feed a small group of warm, chloriderich springs SE of Tecuamburro Volcano. The other system is located beneath the Infernitos area in the andesitic highland and consists of a lower-temperature (150–190°C) reservoir with a large natural discharge that feeds the Colmenares hot springs.  相似文献   

11.
About 90 thermal areas in Indonesia are indicated, most of which could be grouped into hyperthermal areas located in active volcanic belts. The thermal manifestations are fumaroles, geysers, hot springs and hot mud-pools with surface temperatures generally at boiling point or more than 70°C. A tentative evaluation has been made of the potential of 54 thermal areas with a view to their further development for electrical power. The successful results of these studies in several thermal areas suggest that these volcanic geothermal systems have a high energy potential of about 13,000 – 14,000 MW.The Kawah Kamojang geothermal field in West Jawa is the first promising attempt at utilizing this geothermal energy for electrical power; a 30 MW geothermal power plant has already been installed, and a further 3 units totalling 165 MW are planned.  相似文献   

12.
The Ahram, Mirahmad and Garu low-temperature geothermal springs in the Zagros Mountains, Boshehr Province, Iran, emerge along the Ghatar-Kazeroon fault. The average temperature of the springs is about 40 °C and the waters have appreciable amounts of dissolved solids and hydrogen sulfide. Based on chemical analyses, including stable isotopes of the thermal waters and data interpretations, and on a comparison with fresh water springs and wells in the study area, we conclude that the hot waters are of meteoric origin. Because of the prevailing geothermal gradient, the waters are heated as they circulate deep in the system through joints, fractures and the Ghatar-Kazeroon fault. During their deep circulation, the waters come into contact with Hormoz Series evaporites and the oilfield brines, resulting in an increase in dissolved ion concentrations.  相似文献   

13.
In total 24 direct current resistivity soundings were carried out during the preliminary stages of a geothermal exploration survey of the Langada hot springs area (northern Greece).The analysis of the data revealed a horst-type morphology striking NW-SE. Correlation between the location of hot springs, successful drill holes and the basement (horst) indicates that the sector of geothermal interest is concentrated along the major axis of the horst mapped.The horst type geothermal structure fits in very well with the pattern of temperatures measured in the major area, as revealed by the temperature map.  相似文献   

14.
In this paper an attempt has been made to correlate the tectonic and geologic features with surface manifestations of geothermal activity in Pakistan to delineate prospective areas for exploration and development of geothermal energy. Underthrusting of the Arabian plate beneath the Eurasian plate has resulted in the formation of Chagai volcanic arc which extends into Iran. Quaternary volcanics in this environment, along with the presence of thermal springs, is an important geotectonic feature revealing the possible existence of geothermal fields. Geothermal activity in the northern areas of Pakistan, as evidenced by thermal springs, is the likely result of collision and underthrusting of the Indian plate beneath the Eurasian plate. Numerous hot springs are found along the Main Mantle thrust and the Main Karakorum thrust in Chilas and Hunza areas respectively. The concentration of hot springs in Sind Province is also indicative of geothermal activity. A string of thermal seepages and springs following the alignment of the Syntaxial Bend in Punjab Province is also noteworthy from the geothermal viewpoint.In Baluchistan Province (southwest Pakistan), Hamun-e-Mushkhel, a graben structure, also shows geothermal prospects on the basis of aeromagnetic studies.  相似文献   

15.
《Geothermics》1998,27(2):211-233
In order to assess the geothermal potential in the Maghrebian region, several studies have been undertaken in the three countries concerned, Morocco, Algeria and Tunisia, during the past decade. Research programmes have considered the surface evidence (thermal springs) and underground thermal information from deep and shallow wells. The main chemical characteristics of the sampled thermal springs and the results of the application of geothermometers as result from these studies are presented. Of the 238 inventoried thermal springs, 169 have been selected, on the basis of complete water analyses and acceptable ionic balances. Measured temperatures range from 22.5 to 98°C, thermal indexes from 0.5 to 78°C and salinities from 0.13 to 52.5 g/L. Most studied springs are sodium-chloride type waters. These basic data allow identification of the main thermal anomalies in the Maghrebian zone, which are located in regions of the Libyan-Tunisian, Algerian-Moroccan and Algerian-Tunisian frontiers, of northern Tunisia, the Eastern Rif and the northern part of the Saharan Atlas.Several chemical geothermometers have been applied to selected springs: NaK, NaKCa, NaKCaMg, Na/Li, Mg/Li, K2/Mg, quarts, chalcedony (Fournier) and chalcedony (Arnorsson). The NaK, NaKCa, NaKCaMg, Na/Li and Mg/Li geothermometers seem to give unreliable results, while K2/Mg and silica temperatures are apparently reasonable. However, dissolved silica seems to be governed by quartz solubility for some thermal springs and by chalcedony solubility for others. The results are tentatively compared with known geothermal gradients and geological features.  相似文献   

16.
Thermal waters from Quaternary volcanic rocks (predominantly andesites) discharge along faults in the Obama geothermal field of southwestern Japan. The chemistry of more than 100 thermal and ground water samples collected between 1936 and 2005 indicate that the Na–Cl hot spring waters are a mixture of “andesitic” magmatic, sea and meteoric waters. Mixing models and silica and cation geothermometry were used to estimate the SiO2 and Cl composition and the temperature (∼200 °C) of the reservoir fluids deep in the geothermal system. The isotopic data (18O and D) are consistent with a mixed origin interpretation of the waters feeding the Obama hot springs, i.e. a large proportion of meteoric and sea waters, and a small magmatic component. Temperatures and chemical concentrations of the thermal waters were affected by the 1944–1959 salt production operations, but have recovered after closure of the salt factories; now they are similar to their pre-1940 values. In the future, the Obama geothermal field may be suitable for electric power generation, although heat and fluid extraction will require careful management to prevent or minimize reservoir cooling.  相似文献   

17.
G.C. Pandey 《Applied Energy》1982,10(4):287-290
Low temperature geothermal springs, which account for about half the total known in India, have been mainly used for spas or other types of bathing. A suggestion has been made that the surface or subsurface hot water from geothermal springs could be used to energise solar pumps which otherwise use solar heated water. A comparison between these two types of device (solar and geothermal) indicates that the latter has two main advantages: (a) the capital investment is less (due to the absence of a solar collector array) and (b) there is non-stop, around-the-clock availability of energy and so a higher utilisation efficiency at all times and seasons. The fixed location of the springs is a major limitation. However, those located around agricultural fields or inhabited areas can be exploited fully.  相似文献   

18.
In order to assess the geothermal resources of the hot springs located in different tectonic regions of India, preliminary geophysical, geochemical and tritium studies were undertaken in Puga valley (Ladakh), Ratnagiri and Kolaba Districts (West Coast) and Bhimbandh (Bihar) areas. The studies indicate that out of the three areas investigated, the Puga valley is the most promising because of its higher geothermal gradient, association of spring waters with magmatic components, its higher estimated reservoir temperature (≥ 200°C) and probable larger available supply of groundwater.  相似文献   

19.
Many hot springs in Geyser Valley declined and ceased flowing during well testing (1950–1958) or the early stages of development (1958–1964) of the Wairakei field, North Island, New Zealand. A simple model that considers mixing, geothermal reservoir pressure, and Darcy flow is applied to analyse the changes in flow rate and chemistry of spring SP18. The model suggests that prior to the testing the observed flow rate of 3 l/s was comprised of about 2.1 l/s of water from the deep reservoir and about 0.9 l/s from shallow groundwater. As the pressure in the reservoir decreased as a result of exploitation, the reservoir component declined but the groundwater component remained near constant until the spring had nearly ceased flowing. The model reasonably predicts the flow cessation date for four other springs (Group A) but poorly predicts that for seven other springs (Group B). These two groups of springs do not appear to be clustered at the ground surface. The pressure–elevation relationship suggests that the Group A springs feed from within the shallower Waiora Formation and Group B springs from within the deeper Wairakei Ignimbrite Formation. The observation that declines of chloride concentrations in Group A springs occurred at least three years before those in springs of Group B is consistent with the finding that Group A springs have a shallower feeder depth.  相似文献   

20.
Chena Hot Springs is a small, moderate temperature, deep circulating geothermal system, apparently typical of those associated to hot springs of interior Alaska. Multi-stage drilling was used in some exploration boreholes and was found to be useful for understanding subsurface flow characteristics and developing a conceptual model of the system. The results illustrate how temperature profiles illuminate varying pressure versus depth characteristics and can be used alone in cases where staged drilling is not practical. The extensive exploration activities helped define optimal fluid production and injection areas, and showed that the system could provide sufficient hot fluids (∼57 °C) to run a 400-kWe binary power plant, which came on line in 2006.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号