共查询到20条相似文献,搜索用时 0 毫秒
1.
提出了一种基于先检测、后滤波的椒盐噪声滤除算法.将像素值为0或255附近的像素点作为疑似噪声点,其余点为信号点.信号点不做任何处理,以保留更多的图像细节.而对于疑似噪声点,首先用改进的自适应极值中值方法进行噪声检测,并将检测结果记录在一个二值矩阵flag中,其中信号点记为1,噪声点记为0.然后根据图像像素值矩阵与flag的点积进行自适应中值滤波处理.实验结果表明,不仅对真实含噪图像处理有很强的适应性,而且对噪声密度高的图像,能在有效去除椒盐噪声的同时保护图像细节.在不同噪声率下均优于标准中值(SMF)滤波法及其一些改进方法,在噪声密度为10%~90%其峰值信噪比(PSNR)平均提高6dB. 相似文献
2.
JIANG Bo HUANG Wei 《中国电子科技》2007,5(1):70-74
Attenuating the noises plays an essential role in the image processing. Almost all the traditional median filters concern the removal of impulse noise having a single layer, whose noise gray level value is constant. In this paper, a new adaptive median filter is proposed to handle those images corrupted not only by single layer noise. The adaptive threshold median filter (ATMF) has been developed by combining the adaptive median filter (AMF) and two dynamic thresholds. Because of the dynamic threshold being used, the ATMF is able to balance the removal of the multiple-impulse noise and the quality of image. Comparison of the proposed method with traditional median filters is provided. Some visual examples are given to demonstrate the performance of the proposed filter. 相似文献
3.
针对现有中值滤波算法对于高密度噪声图像以及纹理细腻图像的边缘处理能力欠佳的缺陷,提出一种基于噪声检测的自适应中值滤波算法.新算法根据噪声点与周围信息的关联程度将噪声点滤波值进行调整,从而更好的处理图像的细节部份.新算法中的自适应策略加强了滤波算法的去噪性能,使其对于含有任意噪声密度的图像也能很好的进行噪声滤除.通过仿真分析,新算法对于细节丰富的图像以及高密度噪声的图像滤波效果良好,有效的提高图像的峰值信噪比,其去噪效果相比其他方法更加优秀. 相似文献
4.
5.
高概率椒盐噪声对数字图像的重度污染大量存在,如要消除信息少且噪点集中的噪声存在诸多困难;而低概率椒盐噪声对数字图像的轻度污染虽然可完全滤除,但在实际图像恢复中又缺少普遍意义.本文基于灰度值空间的模糊划分和描述灰度水平的模糊数,采用极值法对高概率噪声实施检测并建立恰当滤波窗口,应用广义重心去模糊化法和非噪声点对应的隶属函数设计一种新模糊滤波器.最后,通过仿真实例获得该滤波器可有效地过滤数字图像中高概率椒盐噪声,并说明它的去噪性能优于其他常见滤波器. 相似文献
6.
消除噪声的一种变步长自适应滤波方法 总被引:4,自引:0,他引:4
在电子系统中不可避免地会受到噪声的干扰.用固定参数的滤波器进行消除噪声有其缺陷,它对信号与噪声的先验知识需要得较多.本文讨论了用一种变步长自适应滤波器消除噪声的方法.实验仿真证明这种方法能有效地去除弱信号中的噪声. 相似文献
7.
8.
在电子系统中不可避免地会受到噪声的干扰。用固定参数的滤波器进行消除噪声有其缺陷,它对信号与噪声的先验知识需要得较多。本文讨论了用一种变步长自适应滤波器消除噪声的方法。实验仿真证明这种方法能有效地去除弱信号中的噪声。 相似文献
9.
10.
11.
This paper proposed a fuzzy-based switching technique that aims at detection and filtering of impulse noises from digital images. Two types of noise models are used to obtain the noisy images. In this two-step process, the noise-free pixels are remained unchanged. The proposed detection algorithm uses 5 \(\times \) 5 window, based on all neighboring pixels on the center of the window of a noisy pixel. Two weighted median filters are devised, and a particular one is applied selectively to the noisy pixel based on the characteristics of the neighboring pixels within the window. Instead of a single threshold, two threshold values are used in the proposed fuzzy membership function to partition the noise level, and accordingly, a filtering method is applied to restore the corrupted pixel. Experimental results show that the proposed technique outperforms the existing impulse denoising methods in terms of peak signal-to-noise ratio and visual effects, with a comparable time complexity with the existing methods. 相似文献
12.
13.
14.
针对传统自适应中值滤波算法的不足,文中提出了一种改进的自适应中值滤波方法,以有效的去除图像中的高密度脉冲噪声。第一,对于噪声点的检测,首先利用极大值和极小值的数量差找出可疑的噪声点,再利用邻域像素的相似性判断可疑点是否为噪声点。第二,对于滤波中值的计算,先把滤波窗口内具有相同灰度值的极值点压缩到一个,然后再计算中值。实验结果表明,该算法的滤波效果优于传统自适应中值滤波,且具有较好的稳定性。 相似文献
15.
采用背景提取和自适应滤波的视频降噪算法 总被引:1,自引:0,他引:1
针对监控视频图像背景固定的特点,提出一种有效去除高斯噪声和脉冲噪声的降噪算法.首先通过分析噪声设计一种提取视频序列背景图像的算法,然后对运动区域采用自适应像素域滤波算法来进行处理.该算法根据最小可觉差和视频图像特征自适应地选择谐波均值滤波、加权算术平均滤波、α-截尾均值滤波和中值滤波.为评估降噪算法性能,将降噪处理前后的视频序列分别进行MPEG-2编码,并改变目标码率对比视频质量.实验结果显示:降噪处理后的视频能够用更少的(约50%)比特数获得相同的主、客观视频质量;或者用相同的比特数获得更高的视频质量. 相似文献
16.
17.
对于那些明显偏离高斯型白噪声的加性噪声,如拖尾脉冲噪声,高斯脉冲噪声等,已有方法的滤噪性能会严重退化.为此,该文提出了一种去除脉冲噪声的新方法.该方法首先由被污染图像估计出原图像的直方图.然后应用模糊集理论,利用加权策略得到了一个符合图像灰度分布统计规律的模糊隶属度函数,以此隶属度函数构建一个加权平均滤波器. 新方法有效地利用了原图像的先验知识,能够根据图像区域特性差异及脉冲噪声强弱自适应地采用不同的滤波尺度.文章比较了传统滤波器、已有的模糊滤波器和本文方法的结果.实验表明本文方法具有更好的效果. 相似文献
18.
An Adaptive Radial Basis Function Neural Network Filter for Noise Reduction in Biomedical Recordings
J. Mateo-Sotos A. M. Torres E. V. Sánchez-Morla J. L. Santos 《Circuits, Systems, and Signal Processing》2016,35(12):4463-4485
Electroencephalogram (EEG) recordings often experience interference by different kinds of noise, including white, muscle and baseline, severely limiting its utility. Artificial neural networks (ANNs) are effective and powerful tools for removing interference from EEGs. Several methods have been developed, but ANNs appear to be the most effective for reducing muscle and baseline contamination, especially when the contamination is greater in amplitude than the brain signal. An ANN as a filter for EEG recordings is proposed in this paper, developing a novel framework for investigating and comparing the relative performance of an ANN incorporating real EEG recordings. This method is based on a higher-order statistics-based radial basis function (RBF) network. This ANN improves the results obtained with the conventional EEG filtering techniques: wavelet, singular value decomposition, principal component analysis, adaptive filtering and independent components analysis. Average results for the RBF-based method provided a noise reduction (SIR) of (mean\(\pm \) SD) \(\mathrm{SIR}=19.3\pm 0.3\) in contrast to traditional compared methods that, for the best case, yielded \(\mathrm{SIR}=15.2\pm 0.3\). The system has been evaluated within a wide range of EEG signals. The present study introduces a new method of reducing all EEG interference signals in one step with low EEG distortion and high noise reduction. 相似文献
19.
20.
论文结合几种去噪方法,提出一种统一的图像去噪模型.该模型通过一个统一的目标函数将图像去噪问题转化为最优化问题,目标函数的构造主要包括估计残差惩罚函数、局部权函数及正则化项三个方面.随后基于此模型提出一种新的去除椒盐噪声的非线性滤波方法,其中估计残差惩罚函数采用L1范数形式,局部权函数采用自适应高斯核函数,正则化项则利用图像的小波域稀疏性作为先验约束来构造.由于充分融合了图像的全局和局部统计特性,因而在抑制噪声的同时能够更好地保持图像边缘等细节特征,相关去噪实验结果证实了本文方法的有效性. 相似文献