共查询到18条相似文献,搜索用时 53 毫秒
1.
基于EPF-IMM算法的高机动目标跟踪研究 总被引:1,自引:1,他引:1
融合粒子滤波与交互多模算法的优势,提出了一种基于进化粒子滤波的交互多模算法(EPF-IMM)。该算法将遗传进化思想引入到传统的粒子滤波,在粒子迭代中采用遗传算法中的编码、交叉、变异等算子实现粒子的自适应进化且隐含重采样,从而改进其粒子退化现象。然后利用粒子滤波信息,在交互多模型中进行更新运算。既解决了IMM算法对非线性、非高斯环境的适应性问题,又解决了PF的无关联对应模型问题。与标准IMM算法进行高机动目标跟踪性能比较,试验仿真结果表明,EPF-IMM算法的跟踪精度高。 相似文献
2.
3.
在处理非线性机动目标跟踪问题时,传统的非线性滤波估计算法跟踪误差大且容易引起滤波发散.针对上述问题,研究将强跟踪平方根容积卡尔曼滤波(SCKF-STF)和交互多模型(IMM)算法相结合,提出一种新型的交互多模型强跟踪平方根容积卡尔曼滤波(IMM-SCKF-STF)跟踪算法.该算法在SCKF基础上引入强跟踪渐消因子,使其不仅拥有应对机动目标状态突变的强跟踪能力,同时还具备交互多模型算法的优良机动目标跟踪性能.因此,新算法在机动目标跟踪方面将获得更高的非线性滤波估计精度,且算法的稳定性和应对状态突变的跟踪鲁棒性能获得显著提高.最后,通过两个仿真例子验证了此算法的有效性与优越性. 相似文献
4.
在军事和民用航空领域,可靠而精确地跟踪目标始终是目标跟踪系统设计的关键。但当目标处于强机动多模型的运动情况下时,在对目标进行状态估计时,单独采用一个模型会受到模型自身局限性的影响使得滤波精度不高,于是有必要采用多个模型描述机动目标的运动状态。基于此,采用交互式多模型滤波算法对目标进行跟踪。仿真结果表明,该算法对机动目标有很好的跟踪效果和较高的跟踪精度。 相似文献
5.
基于IMMCKF的机动目标跟踪算法 总被引:1,自引:0,他引:1
针对非线性机动目标跟踪中滤波器易发散、跟踪精度低等问题,将容积卡尔曼滤波器(CKF)引入到交互式多模型算法(IMM)中,设计了交互式多模型容积卡尔曼滤波算法(IMMCKF)。该算法采用Markov过程描述多个目标模型间的切换,利用CKF滤波器对每个模型进行滤波,将各滤波器状态输出的概率加权融合作为IMMCKF的输出。仿真结果表明,与IMMUKF算法相比,IMMCKF算法跟踪精度更高,模型切换速度更快,计算量更小,该算法具有重要的工程应用价值。 相似文献
6.
针对杂波环境被动传感器机动目标跟踪问题,该文研究了一种基于粒子滤波的被动多传感器机动目标跟踪新算法。 在该算法中,首先推导了杂波环境下粒子滤波的似然函数表达式。其次将粒子滤波与交互多模型(IMM)相结合,用IMM方法实现模型的切换,以适应目标的机动变化。用粒子滤波实现对观测方程的非线性处理。最后,建立了被动多传感器的非线性观测模型,避免了目标的不可观测性,并且算法还能够处理非高斯噪声情况。仿真实验结果表明,提出的算法能够有效地对被动机动目标跟踪,且性能优于交互多模型概率数据关联滤波器(IMM-PDAF)。 相似文献
7.
交互多模型算法(IMM)的子滤波器都是基于Kalman滤波的,它要求知道精确的噪声统计特性,然而在许多情况下噪声信号的统计特性是未知的,只能得到噪声信号的近似模型,这在一定程度上降低了IMM算法的跟踪精度.基于以上问题,将H∞滤波算法应用于IMM算法的滤波过程.H∞滤波对干扰信号的统计特性不作任何假设,与Kalman滤波相比,H∞滤波器对噪声形式的不确定性不太敏感,鲁棒性好.在跟踪过程中还引入了一种数值稳健的模型概率计算方法,能有效防止计算过程中出现数值溢出现象,提高了算法的可靠性.最后通过仿真实验,证明了算法的有效性. 相似文献
8.
对多运动模型的目标进行跟踪,通常采用传统的交互式多模型粒子滤波算法。但是,该算法存在一些缺陷和不足。为此,提出了一种新的基于变速率模型和遗传算法的IMMPF目标跟踪算法。针对IMMPF算法对目标进行跟踪时可能出现的未知可变转弯速率,采用了一种更恰当的可变速率目标模型;对于IMMPF算法中的粒子多样性丧失问题,则将进化理论中的遗传算法引入到目标跟踪算法中,对采样进行优化,增加了采样粒子的多样性,使采样向后验分布取值较大的区域移动。仿真结果表明,提出的算法能更好的适应目标的机动运动,同时明显减少所需的采样数,取得了更好的跟踪性能。 相似文献
9.
10.
11.
针对机动目标跟踪问题,提出了一种IMM-RDCKF算法。首先充分利用量测方程中只有部分状态变量是非线性的特点,对于非线性的量测方程采用降维滤波方法,可以在保障跟踪精度条件下减小计算量。其次,对IMM算法中的转移概率矩阵进行实时估计,提高了模型匹配概率。再次,滤波过程中由于误差累积可能导致协方差矩阵失去正定性,对算法进行了优化,确保了滤波过程中协方差矩阵的正定性,提高了算法稳定性。Monte-Carlo仿真结果表明,与CKF算法相比,该算法的跟踪精度有明显的提高,计算效率提高了一倍。 相似文献
12.
为提高运动多站对机动目标的无源跟踪性能,提出了一种新的基于交互式多模型-边缘化卡尔曼滤波(IMM-MKF)的机动目标跟踪算法。该算法将交互式多模型(IMM)结构和边缘化卡尔曼滤波(MKF)结合,利用MKF算法对每个模型进行滤波,对滤波结果进行交互作用来得到跟踪结果。以只测角机动目标跟踪为例对所提算法进行仿真分析,仿真结果表明,相对于采用扩展卡尔曼滤波(EKF)、不敏卡尔曼滤波(UKF)及容积卡尔曼滤波(CKF)算法的典型交互式多模型算法,所提算法具有更好的跟踪性能。 相似文献
13.
14.
从认知雷达的角度出发,综合考虑跟踪模型和波形选择,提出一种能够适应目标运动状态急剧变化的波形自适应机动目标跟踪算法。首先,将匀速运动模型和当前统计模型作为交互式多模型(IMM)的模型集,并结合贝叶斯理论提出一种时变转移概率的自适应IMM算法。然后,结合量测误差椭圆与目标状态预测误差椭圆正交理论,研究了基于基带脉冲波形模糊函数旋转的波形库实现方法并给出了波形自适应选择跟踪算法的具体步骤。仿真实验表明,所提算法能够适应目标不同加速度机动,雷达系统跟踪性能得到了较大幅度提升。 相似文献
15.
代价参考粒子滤波算法通过动态优化自定义代价函数和风险函数来衡量状态滤波估计的质量,选取最优的状态估计.与粒子滤波算法相比其优点是不需要任何先验概率知识的假定和重采样过程可实现并行处理.将代价参考粒子滤波与当前统计模型的优点相结合,提出一种新的当前统计模型自适应跟踪算法,用于非线性非高斯系统的机动目标跟踪.Monte Carlo仿真表明,该算法跟踪精度优于标准的交互多模型算法和当前统计模型自适应跟踪算法,实时性好于当前统计模型高斯粒子滤波算法. 相似文献
16.
17.