共查询到19条相似文献,搜索用时 90 毫秒
1.
该文结合多尺度技术与谱分析方法,提出了基于多尺度谱特征的图像分割方法,并将之用于SAR图像分割。该方法在多尺度框架内,提取每个像素在不同尺度下的局部谱特征(AR模型参数),并组合各尺度的谱特征为一多尺度谱特征向量,作为该像素的分类特征,利用一基于二元假设检验的分类器对该像素分类。与单一尺度的谱特征分割方法相比,多尺度谱特征分割保留了算法简单的优点的同时,在小窗口情况下,仍能给出较平滑的分割结果,从而减小了计算复杂度。 相似文献
2.
根据SAR图像的概率密度函数获得图像的拟然函数,然后将似然函数和边界约束方程结合起来,提出适合于SAR图像分割的代价函数,其中边界约束方程引入邻域结构信息来保证区域边界的规则性,通过使代价函数最小来获得图像的最优分割。算法首先将原图分割成一定大小的块状区域作为初始分割,每一区域代表一个类别;然后随机调整相邻两个区域之间的像素,通过比较代价函数的变化,利用模拟退火算法确定接受该调整的概率。模拟退火是一种求解全局最优的算法,当温度趋向于0时,它可以获得使代价函数最小的SAR图像的分割。最后,利用基于相似性的融合方法对分割进行后期处理,将相似的较小的区域融合成较大的区域,使得分割更合理。我们将该算法应用到一些SAR测试图像上,获得了比较满意的结果。 相似文献
3.
基于数学形态学的SAR图像分割方法 总被引:3,自引:0,他引:3
图像分割是遥感图像处理中很重要的一步。因SAP图像通常带有较强的嗓声,用传统的边缘检测方法效果不理想。作者利用数学形态学开闭运算和混合滤波,可据目标的形状选用算法中的探针,取得了较好的滤波去噪和目标分割的效果。 相似文献
4.
5.
基于MRF场的SAR图像分割方法 总被引:10,自引:0,他引:10
提出了一种基于MRF(Markov Random field)模型的SAR(Synthetic Aperture Radar)图像分割算法,本算法利用ICM((Iterative Conditional Mode)局部 优化方法,获得MAP(maximum a posteriori)准则下的图像分割结果。并引入了剔除外层数据的机制,用MSTAR(Moving and Stationary Target Acquisition and Recognition)数据进行实验,结果表明,算法能有效减少斑点噪声的影响将图像分割为目标,阴影,背景三部分,实验结果是令人满意的。 相似文献
6.
目的 图像分割的中心任务是寻找更强大的特征表示,而合成孔径雷达(synthetic aperture radar, SAR)图像中斑点噪声阻碍特征提取。为加强对SAR图像特征的提取以及对特征充分利用,提出一种改进的全卷积分割网络。方法 该网络遵循编码器—解码器结构,主要包括上下文编码模块和特征融合模块两部分。上下文编码模块(contextual encoder module, CEM)通过捕获局部上下文和通道上下文信息增强对图像的特征提取;特征融合模块(feature fusion module, FFM)提取高层特征中的全局上下文信息,将其嵌入低层特征,然后将增强的低层特征并入解码网络,提升特征图分辨率恢复的准确性。结果 在两幅真实SAR图像上,采用5种基于全卷积神经网络的分割算法作为对比,并对CEM与CEM-FFM分别进行实验。结果显示,该网络分割结果的总体精度(overall accuracy, OA)、平均精度(average accuracy, AA)与Kappa系数比5种先进算法均有显著提升。其中,网络在OA上表现最好,CEM在两幅SAR图像上OA分别为91.082%和90... 相似文献
7.
由于存在相干斑噪声的影响,给SAR图像分割造成很大的困难,提出一种基于多尺度特征融合的SAR图像分割方法。该方法利用快速离散curvelet变换提取图像的纹理特征,利用平稳小波变换提取图像的统计特征,将两种多尺度特征融合成高维的特征向量,采用模糊C均值聚类的方法进行分割。在仿真SAR图像和真实SAR图像的分割实验结果表明,提出的方法优于单独采用小波变换进行SAR图像分割的方法,在消除均质区内碎块的同时,使得边界更为精准和平滑。 相似文献
8.
目前,基于深度学习的合成孔径雷达(SAR)舰船目标检测方法受到广泛关注。但因为模型参数量大、运算内存高等问题限制了其实际应用。通过学生网络模仿教师网络,知识蒸馏被视作一种高效的模型压缩方法。然而,大部分的知识蒸馏算法只针对常见的可见光图像任务,将其直接应用到复杂的SAR图像舰船目标检测上性能表现不佳。通过分析,出现上述性能不佳现象有以下两个原因:(1)前景背景面积严重失衡;(2)缺乏对前景和背景像素的关系建模。针对上述问题,提出基于解耦特征的拓扑距离知识蒸馏算法。前景和背景解耦蒸馏可以缓解前景背景失衡问题。通过解耦特征拓扑距离蒸馏,学生网络可以从教师网络学习到前景背景之间的关系,增强对背景噪声鲁棒性。实验结果表明,相比许多蒸馏算法,所提出的算法可以十分有效地提升学生网络在SAR图像舰船目标检测精度。比如,基于ResNet18-C4骨干网络的Faster R-CNN模型在HRSID数据集上AP提升6.85个百分点,从31.81%提升到38.66%。 相似文献
9.
利用图像纹理的信息熵特征,并结合空间矩阵的概念,提出一种基于免疫K-means聚类的无监督SAR图像分割算法.免疫规划的K-means聚类克服收敛结果易陷于局部极值的缺点,且保持K-means算法快速收敛的特点.信息熵的应用可有效抑制相干斑噪声的影响,空间矩阵的引入实现聚类过程中类别的自动合并.该算法执行复杂度不高,对噪声的影响有较强的鲁棒性,分割结果较好,是一种实用的SAR图像分割算法. 相似文献
10.
基于GLCM特征的改进FCM的SAR图像分割方法 总被引:1,自引:0,他引:1
为了克服了较大窗口提取图像边缘处特征值的不足,提出一种基于GLCM特征矩阵的动态滑动窗口算法.针对模糊C均值算法中,聚类中心不容易确定,聚类容易陷入局部最优解的问题,将粒子群优化算法(PSO)引入到聚类算法中,实现全局搜索.应用改进的模糊C均值算法完成了基于SAR纹理特征的图像分割,克服了传统聚类算法仅依赖灰度值进行分割的局限性,也一定程度上克服了斑噪声对SAR图像分割的影响.实验结果表明,该方法应用于SAR图像分割时,取得了很好的分割效果. 相似文献
11.
12.
13.
冰情图在极区安全航行、气候研究等方面具有重要价值,但其存在不能提供像素级的定位信息、对密集度的估计较粗略等缺陷。基于此,提出一种基于冰情图的边缘保持区域型MRF分割方法。依据冰情图从SAR图像中提取子图像,进行SRAD滤波、分水岭初始分割、区域型MRF分割,合并各子图像得到最终分割结果,实现人工解译和计算机解译的结合,得到像素级的结果,具有物体边缘定位准确、分割效率高、可并行化处理等优点。实验结果表明,该方法对极区SAR海冰图像均具有良好的分割效果。 相似文献
14.
针对海洋原始图像与低秩和稀疏矩阵分解模型数据结构不一致的问题,本文提出一种新的基于矩阵分解的海洋SAR图像舰船检测方法。首先该方法需对结构化相似的海洋SAR图像进行重组;然后根据重组矩阵特性适应性设计一个分解精度更高、分解速度更快的新矩阵分解模型,并利用增广拉格朗日乘子法求解模型,在不依赖任何杂波模型和检测统计量的前提下,实现代表舰船目标的稀疏成分的提取;最后利用形态学处理进行优化,实现海洋SAR图像舰船目标的检测。基于高分三号SAR卫星数据的实验结果表明,相比已有的基于鲁棒主成分分析的舰船检测方法,本文方法在处理复杂海况时,能更快速度地以较好的形状从海杂波中准确提取舰船目标,具有更好的鲁棒性。 相似文献
15.
16.
为了有效抑制SAR强度图像中的相干斑噪声,提出一种改进Sigma滤波并结合Gamma MAP滤波的空域相干斑抑制方法。首先利用阈值判断法判断并保留强点目标,然后结合SAR图像分布模型和MMSE准则判断Sigma区间,其中可以根据图像局部统计特性自适应调整窗口尺寸,最后选择Sigma区间内像素进行Gamma MAP滤波。实验结果表明:对于星载和机载SAR图像,在相干斑噪声抑制和边缘纹理细节信息保持方面,该方法较其他常用的空域相干斑抑制方法具有明显的优越性,能极大地提高SAR图像判读和目标识别能力。 相似文献
17.
针对利用灰度共生矩阵作为纹理特征的传统方法不能够有效表征图像的边缘高频信息的问题,结合小波的多分辨率分析,提出了一种基于小波变换域统计特性的合成孔径雷达(SAR)图像分割算法。图像经过小波变换后,其统计特性服从广义高斯分布(GGD),利用最大似然(ML)估计,推导出GGD的两个参数[α]、[β],提出了利用Newton-Raphson法对[β]进行快速迭代求解。并将[α]、[β]作为SAR图像的纹理特征,利用K-Means对其进行分割。通过对典型的SAR图像结果分析,表明了该算法的有效性。 相似文献
18.