首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
采用熔体接触反应法制备了TiC/Al-4.5Cu复合材料,通过光学显微镜、透射电镜等,对TiC颗粒增强Al-4.5Cu原位复合材料的相结构进行分析。结果表明,5%TiC/Al-4.5Cu原位复合材料的主要增强相为TiC;TiC弥散分布在α-Al基体中,与基体结合良好且界面光滑。在5%TiC/Al-4.5Cu原位复合材料中TiC呈球形或近球形,颗粒细小,其尺寸约为0.1~0.5μm;而在5%TiC/Al-4.5Cu-ХMg原位复合材料中TiC呈规则六边形,颗粒较大,其尺寸约为0.5~0.8μm。  相似文献   

2.
采用接触反应法制备原位颗粒增强铸造Al-12Si-4Cu复合材料,研究超声处理工艺对原位TiC和TiAl_3颗粒形貌的影响。结果表明:在铸造Al-12Si-4Cu复合材料中可以原位生成团聚态TiC颗粒、长杆状或块状TiAl_3颗粒;未经超声处理时,TiC颗粒团聚等效直径约70μm,经1500 W超声处理后,其减小到45μm;当超声处理功率增大到3000 W,TiC的团聚现象消失,颗粒均匀分散在基体中,并且长杆状TiAl_3颗粒长度减小到50~150μm,块状TiAl_3颗粒转变为相互独立的小尺寸块状。  相似文献   

3.
梁艳峰  董晟全  杨通 《铸造》2007,56(1):49-52
通过预制块在铸造Al-4.5%Cu合金熔体中的自蔓延反应,制备了TiCp/Al-4.5%Cu原位复合材料,分析了TiC形成的热力学及其原位生成过程。试验结果表明,TiCp/Al-4.5%Cu原位复合材料的拉伸性能比基体合金有大幅度地提高;原位反应生成的TiC颗粒呈小圆片状,平均直径0.15μm,与基体结合良好,无界面有害相。提出了一种新的TiC颗粒合成机制:Al依次与Ti、C发生反应生成Al3Ti和Al4C3,同时放出大量的热引发了TiC的生成;Al3Ti和Al4C3作为中间反应产物,由于热力学上的不稳定,最终被TiC取代。  相似文献   

4.
TiC原位增强Al-4.5Cu合金的强韧化机理   总被引:3,自引:0,他引:3  
对自蔓延反应制备的TiC/Al—4.5Cu复合材料进行拉伸性能测试,并通过光学显微镜、X射线衍射、透射电镜等手段,对TiC颗粒的增强机理进行分析。结果表明,原位生成的增强相TiC粒子随着温度的升高(800-1000℃)不断增多,复合材料的拉伸性能也随之提高;由于熔融Al阻碍了TiC颗粒的聚集长大,细小的TiC颗粒弥散分布于熔体中,并作为十Al凝固时的异质形核核心,有效地强化了基体。  相似文献   

5.
采用熔铸-原位合成法制备了TiC/7075Al复合材料并对其微观组织和凝固机制进行了研究。原位合成复合材料中的TiC颗粒以近球形为主,平均尺寸小于700 nm。随着TiC颗粒含量的增加,复合材料的晶粒尺寸明显减小,当TiC颗粒含量为8wt%时,基体晶粒尺寸可以减小至10μm左右。熔体反应过程中,随着TiC增强相颗粒含量的增加,凝固前沿的流体的粘度增加,降低了TiC颗粒的临界裹入速度,同样在反应时降低温度将增加熔体的粘度,有利于TiC颗粒的裹入。  相似文献   

6.
以B4C和Ni60A粉末为预涂材料,采用氩弧熔覆技术,在Ti6Al4V合金表面原位合成TiC与TiB2增强相增强钛基复合材料涂层.运用XRD,SEM等分析手段研究了复合涂层的显微组织,利用显微硬度仪测试了复合涂层的显微硬度并用磨损试验机分析了其在室温干滑动磨损条件下的耐磨性能.结果表明,熔覆层组织主要由TiC和TiB2组成,TiC颗粒和TiB2颗粒弥散分布在基体上,TiC颗粒的尺寸为2~3μm,而呈长条状的TiB2颗粒尺寸为3~5μm.显微硬度和耐磨性测试结果表明,该复合涂层显微维氏硬度高达1200MPa左右,复合涂层的耐磨性能比Ti6Al4V基体提高约20倍.  相似文献   

7.
通过向含Ti的Al-Si合金熔体中通入CO2气体制备Al2O3-TiC/Al复合材料的方法.研究了Al2O3-TiC/Al复合材料特性。用X射线衍射仪(XRD)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)对复合材料的组织进行了研究。研究表明,CO2与合金熔体中的Al、Ti原位反应生成Al2O3和TiC颗粒,Al2O3和TiC颗粒尺寸在0.2~1.0μm之间,均匀分布在基体中,反应生成的Al2O3和TiC颗粒数量与CO2的通入时间有关。  相似文献   

8.
采用原位反应近液相线铸造方法制备含有少量原位TiC颗粒的7075铝基复合材料,通过透射电镜观察复合材料中的原位TiC颗粒的形貌,并研究原位TiC颗粒与7075Al基体之间的界面微观结构.结果表明,原位TiC颗粒尺寸分布于亚微米级,形貌呈近球形,在复合材料界面处7075Al基体与原位TiC颗粒具有Al(200)//TiC(200)、Al基体(216)∥TiC(111)的晶体学位向关系并形成共格界面,界面干净,无任何反应物,Al基体的(200)晶面优先沿原位TiC颗粒的(200)晶面生长,其(216)晶面优先沿原位TiC颗粒的(111)晶面生长.  相似文献   

9.
采用接触反应法制备了原位TiC/Al-4.5Cu复合材料,借助光学显微镜、透射电子显微镜研究了向基体合金中添加不同含量的Mg对复合材料微观组织和拉伸性能的影响。结果表明:随着Mg的添加量由0.8%(质量分数,下同)增加到2.0%,TiC/Al-4.5Cu复合材料的延伸率下降,而抗拉强度在1.5%Mg时,达到极值。与同等条件下制备的不含Mg的TiC/Al-4.5Cu复合材料相比,抗拉强度提高了17.7%,但延伸率下降了17.9%。TiC颗粒的细化有助于复合材料力学性能的提高,但针状Al2CuMg相的析出阻碍了复合材料塑性的进一步提高。TiC/Al-4.5Cu-Mg复合材料中TiC颗粒尺寸为100nm左右。  相似文献   

10.
原位TiB2亚微米颗粒增强铝基复合材料的高温蠕变性能   总被引:4,自引:0,他引:4  
运用盐-金属反应法制备了亚微米TiB2颗粒增强铝基复合材料(TiB2/AC8A).TiB2颗粒通过钛盐和硼盐与铝合金反应原位生成.对复合材料进行了显微组织观察和高温蠕变性能实验.原位TiB2颗粒的尺寸约为0.5μm,近似呈球形。TiB2/AC8A复合材料具有优异的高温蠕变性能。10ω/%TiB2原位颗粒(~0.5μm)增强AC8A复合材料的蠕变抗力比10φ/%SiCp(1.7μm)外加颗粒增强AI复合材料至少要高两个数最级。10ω/%TiB2/AC8A复合材料表现出高的名义应力指数(11.7~12.5)和名义激活能(265kJ/mol),其稳态蠕变数据能够用廊力指数为8的亚结构不变模型和门槛应力来解释。TiB2/AC8A复合材料的蠕变断裂行为符合Monkman-Grant关系式。  相似文献   

11.
Al-TiC中间合金的制备及对AZ91合金铸态组织的细化效果   总被引:3,自引:0,他引:3  
韩辉  刘生发  吕亚清 《铸造》2007,56(4):341-344
采用铸造接触反应法制备Al-TiC间合金,EPMA和XRD分析显示,反应温度和保温时间是TiC颗粒原位合成的重要工艺参数,基于热力学计算和动力学分析探讨了原位TiC颗粒的形成机制。在AZ91镁合金熔体中加入0.3%的Al-10%TiC间合金可明显细化晶粒尺寸,由基体合金的107μm降至57μm,降低幅度约为47%。晶粒细化机制可归结为TiC颗粒作为初生α-Mg的异质晶核。  相似文献   

12.
通过预制块在铸造Al-4.5Cu合金熔体中的自蔓延反应来制备TiCp/Al-4.5Cu复合材料,考察原位反应温度对该复合材料组织与力学性能的影响。结果表明,原位反应温度为950℃时所制备的复合材料力学性能较优;TiC颗粒呈小圆片状,与基体结合良好,无其他有害相生成。原位反应温度为900℃和1 000℃时所制备的复合材料组织中都有产生针状Al3Ti的倾向。  相似文献   

13.
开发了Al-K2ZrF6体系熔体反应法合成原位铝基复合材料,采用XRD,SEM和TEM分析了复合材料中相组成、微观组织和界面结构。实验结果表明:合成的增强相为Al3Zr颗粒,常规金属型铸造的复合材料中其尺寸在3μm~4μm左右,一般成聚集态分布,颗粒形貌基本为长方体状:该复合材料经重熔快淬成形后,颗粒尺寸减小,基本为粒状,并弥散分布于基体上。Al3Zr/Al复合材料的界面结构研究表明,Al3Zr颗粒与Al存在一定的晶体学位向关系:[^-2^-21]Al3Zr∥[100]Al,(012)Al3Zr∥(1^-10)Al,其点阵错位度仅为10.87%,这表明Al3Zr颗粒可作为基体Al相的形核衬底。Al3Zr/Al复合材料的力学性能测试显示,当Al3Zr颗粒体积分数为11.2%时,抗拉强度和屈服强度分别为148.7MPa和110.2MPa,而且Al3Zr/Al复合材料的抗拉强度和屈服强度均随颗粒体积分数增加显著提高。  相似文献   

14.
采用铝热快速凝固工艺制备了FeNiCr合金及TiC/FeNiCr复合材料,利用光学显微镜、扫描电镜、X射线衍射等手段研究了该复合材料的显微组织和相结构,测量了复合材料的压缩强度。结果表明,TiC/FeNiCr复合材料由TiC陶瓷增强相和α-Fe合金基体组成。TiC/FeNiCr复合材料组织细小,TiC呈多边形均匀分布在合金基体中,晶粒尺寸约为2~3μm。TiC对FeNiCr基体具有很好的晶粒细化及强化作用,TiC/FeNiCr的压缩断裂强度及形变率分别为2760MPa及25%,远大于FeNiCr合金及部分Fe基非晶材料。  相似文献   

15.
TiC/Al和SiC/Al中间合金对Mg-Al系合金晶粒的细化   总被引:5,自引:0,他引:5  
柳延辉  刘相法  李廷斌  边秀房 《铸造》2003,52(7):472-475
研制出两种新型的Mg-Al系合金晶粒细化剂——Al-4%TiC和Al-10%SiC中间合金。结果表明:这两种中间合金对Mg-Al系合金均有良好的晶粒细化作用。向AZ63合金中加入1%的TiC/Al中间合金可使其晶粒由原来的约2mm减小至250μm左右;向AZ31合金中加入0.5%的SiC/Al中间合金可使其晶粒由原来的约600μm减小至200μm左右。分析认为,表面覆有Al4C3过渡层的TiC和SiC颗粒可以作为α-Mg的结晶核心,同时SiC颗粒本身也可以作为α-Mg的异质结晶核心。大量异质结晶核心的存在是导致α-Mg晶粒细化的主要原因。  相似文献   

16.
原位Al_3Ti粒子增强ZL101铝基复合材料   总被引:4,自引:0,他引:4  
研究了采用直接反应法制备Al3Ti/ZL1 0 1原位复合材料的工艺 ,并对所制备材料的显微组织、相结构、力学性能及增强相组成进行了研究。结果表明 ,原位复合材料中的增强体为Al3Ti,该增强体的尺寸约为 0 .5μm ,均匀分布于α(Al)基体中 ,它可较大幅度地提高原位复合材料的力学性能。  相似文献   

17.
采用铝热快速凝固工艺制备了FeNiCr合金及TiC/FeNiCr复合材料,利用光学显微镜、扫描电镜、X射线衍射等手段研究了该复合材料的显微组织和相结构,测量了复合材料的压缩强度。结果表明,TiC/FeNiCr复合材料由TiC陶瓷增强相和α-Fe合金基体组成。TiC/FeNiCr复合材料组织细小,TiC呈多边形均匀分布在合金基体中,晶粒尺寸约为2-3μm。TiC对FeNiCr基体具有很好的晶粒细化及强化作用,TiC/FeNiCr的压缩断裂强度及形变率分别为2 760MPa及25%,远大于FeNiCr合金及部分Fe基非晶材料。  相似文献   

18.
采用原位自生的方法制备了TiC颗粒增强的TiC/Ti-6Al-4V复合材料。将锻造后的钛基复合材料在700 ℃、995 ℃以及1020 ℃进行热处理,获得具有不同基体微观组织的复合材料,研究基体微观组织对钛基复合材料拉伸性能以及断裂韧性的影响。结果表明,初始α相的含量及其尺寸对TiC/Ti-6Al-4V复合材料的断裂韧性影响较大,初始α相体积分数为20%时,复合材料拉伸性能最好,抗拉强度和伸长率分别为1057.5 MPa、19.95%;同时具有优良的断裂韧性。  相似文献   

19.
采用熔铸过程中的原位反应合成工艺方法,制备了TiCp/PH15-7Mo(0Cr15Ni7Mo2Al)钢基复合材料。对复合材料的显微组织分析表明,复合材料中的TiC呈方块状形貌,且分布均匀,没有出现团聚现象。颗粒的尺寸在3~5μm之间。对基体合金和复合材料的对比性能试验结果显示.用本文工艺制备的复合材料室温抗拉强度和屈服强度均比基体合金有大幅度的提高。但塑性和韧性有所降低。在油润滑条件下,复合材料的耐磨损性能比基体合金高4倍。  相似文献   

20.
利用原位反应同喷射沉积工艺相结合的方法制备了TiB2/Zn-30Al-1Cu复合材料。采用光学显微镜(OM)、扫描电镜(SEM)对该复合材料的组织进行观察,并对其进行了X射线衍射测试分析。结果表明,在合理的喷射沉积工艺参数下,TiB2颗粒在基体材料中均匀分布并且尺寸小于2μm;原位反应TiB2颗粒的引入使得该复合材料的组织细化,初生富铝相α'相较多,呈细小的颗粒状形态且α'相尺寸小于2μm。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号