首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The release of metoclopramide hydrochloride (a very water soluble cationic drug) and diclofenac sodium (a sparingly soluble anionic drug) from pellets coated with Surelease containing hydroxypropylmethylcellulose (HPMC) at different coating loads was investigated. The release rates of either drug at each coating composition decreased as the coating load increased. Inclusion of HPMC E15 increased the release rates of both drugs compared to pellets coated only with Surelease. This was thought to be due to the leakage of the soluble part of the film (HPMC E15) during dissolution, which left pores for drug release. The Surelease:HPMC E15 ratio had a major role in the release rates of drugs. Addition of HPMC E15 into Surelease did not change the release mechanism for metoclopramide hydrochloride (the mean value of n ≈ 0.57) from that of Surelease alone, and diffusion remained the main mechanism controlling the release. However, the release exponent (≈1.28) increased for diclofenac sodium on addition of HPMC E15, indicating a dissolutioncontrolled mechanism. Despite its lower water solubility, diclofenac sodium was released slightly faster than metoclopramide hydrochloride from pellets coated with Surelease containing HPMC E15 at equivalent coating loads.  相似文献   

2.
The release of metoclopramide hydrochloride (a very water soluble cationic drug) and diclofenac sodium (a sparingly soluble anionic drug) from pellets coated with Surelease containing hydroxypropylmethylcellulose (HPMC) at different coating loads was investigated. The release rates of either drug at each coating composition decreased as the coating load increased. Inclusion of HPMC E15 increased the release rates of both drugs compared to pellets coated only with Surelease. This was thought to be due to the leakage of the soluble part of the film (HPMC E15) during dissolution, which left pores for drug release. The Surelease:HPMC E15 ratio had a major role in the release rates of drugs. Addition of HPMC E15 into Surelease did not change the release mechanism for metoclopramide hydrochloride (the mean value of n ≈ 0.57) from that of Surelease alone, and diffusion remained the main mechanism controlling the release. However, the release exponent (≈1.28) increased for diclofenac sodium on addition of HPMC E15, indicating a dissolutioncontrolled mechanism. Despite its lower water solubility, diclofenac sodium was released slightly faster than metoclopramide hydrochloride from pellets coated with Surelease containing HPMC E15 at equivalent coating loads.  相似文献   

3.
In this study a sustained-release formulation of traditional Chinese medicine compound recipe (TCMCR) was developed by selecting heart-protecting musk pills (HPMP) as the model drug. Heart-protecting musk pellets were prepared with the refined medicinal materials contained in the recipe of HPMP. Two kinds of coated pellets were prepared by using pH-dependent methacrylic acid as film-forming material, which could dissolve under different pH values in accordance with the physiological range of human gastrointestinal tract (GIT). The pellets coated with Eudragit L30D-55, which dissolves at pH value over 5.5, were designed to disintegrate and release drug in the duodenum. The pellets coated with Eudragit L100-Eudragit S100 combinations in the ratio of 1:5, which dissolve at pH value 6.8 or above, were designed to disintegrate and release drug in the jejunum to ileum. The pellets coated with HPMC, which dissolves in water at any pH value, were designed to disintegrate and release drug in the stomach. Finally, the heart-protecting musk sustained-release capsules (HPMSRC) with a pH-dependent gradient-release pattern were prepared by encapsulating the above three kinds of coated pellets at a certain ratio in hard gelatin capsule. The results of dissolution of borneol (one of the active compounds of the TCMCR) in vitro demonstrated that the coating load and the pH value of the dissolution medium had little effect on the release rate of borneol from pellets coated with hydroxypropyl methyl cellulose (HPMC), but had a significant effect on the release rate of borneol from pellets coated with Eudragit L30D-55 or Eudragit L100-Eudragit S100 combinations in the ratio of 1:5. The pellets coated with Eudragit L30D-55 at 30% (w/w) coating load or above had little drug release in 0.1 mol/L HCl for 3 hr and started to release drug at pH value over 5.5. The pellets coated with Eudragit L100-Eudragit S100 combinations in the ratio of 1:5 at 36% (w/w) coating load or higher had little drug release in 0.1 mol/L HCl for 3 hr and in phosphate buffer of pH value 6.6 for 2 hr, and started to release drug at pH value 6.8 or above. The release profiles of lipophilic bornoel and hydrophilic total ginsenoside from HPMSRC, consisting of three kinds of pellets respectively coated at a certain ratio with HPMC, Eudragit L30D-55, and Eudragit L100-Eudragit S100 in the ratio of 1:5, showed a characteristic of pH-dependent gradient release under the simulated gastrointestinal pH conditions and no significant difference between them. The results indicated that various components with extremely different physicochemical properties in the pH-dependent gradient-release delivery system of TCMCR could release synchronously while sustained-releasing. This complies with the organic whole concept of compound compatibility of TCMCR.  相似文献   

4.
ABSTRACT

In this study a sustained-release formulation of traditional Chinese medicine compound recipe (TCMCR) was developed by selecting heart-protecting musk pills (HPMP) as the model drug. Heart-protecting musk pellets were prepared with the refined medicinal materials contained in the recipe of HPMP. Two kinds of coated pellets were prepared by using pH-dependent methacrylic acid as film-forming material, which could dissolve under different pH values in accordance with the physiological range of human gastrointestinal tract (GIT). The pellets coated with Eudragit L30D-55, which dissolves at pH value over 5.5, were designed to disintegrate and release drug in the duodenum. The pellets coated with Eudragit L100–Eudragit S100 combinations in the ratio of 1:5, which dissolve at pH value 6.8 or above, were designed to disintegrate and release drug in the jejunum to ileum. The pellets coated with HPMC, which dissolves in water at any pH value, were designed to disintegrate and release drug in the stomach. Finally, the heart-protecting musk sustained-release capsules (HPMSRC) with a pH-dependent gradient-release pattern were prepared by encapsulating the above three kinds of coated pellets at a certain ratio in hard gelatin capsule. The results of dissolution of borneol (one of the active compounds of the TCMCR) in vitro demonstrated that the coating load and the pH value of the dissolution medium had little effect on the release rate of borneol from pellets coated with hydroxypropyl methyl cellulose (HPMC), but had a significant effect on the release rate of borneol from pellets coated with Eudragit L30D-55 or Eudragit L100–Eudragit S100 combinations in the ratio of 1:5. The pellets coated with Eudragit L30D-55 at 30% (w/w) coating load or above had little drug release in 0.1 mol/L HCl for 3 hr and started to release drug at pH value over 5.5. The pellets coated with Eudragit L100–Eudragit S100 combinations in the ratio of 1:5 at 36% (w/w) coating load or higher had little drug release in 0.1 mol/L HCl for 3 hr and in phosphate buffer of pH value 6.6 for 2 hr, and started to release drug at pH value 6.8 or above. The release profiles of lipophilic bornoel and hydrophilic total ginsenoside from HPMSRC, consisting of three kinds of pellets respectively coated at a certain ratio with HPMC, Eudragit L30D-55, and Eudragit L100–Eudragit S100 in the ratio of 1:5, showed a characteristic of pH-dependent gradient release under the simulated gastrointestinal pH conditions and no significant difference between them. The results indicated that various components with extremely different physicochemical properties in the pH-dependent gradient-release delivery system of TCMCR could release synchronously while sustained-releasing. This complies with the organic whole concept of compound compatibility of TCMCR.  相似文献   

5.
Weakly basic drugs, such as verapamil hydrochloride, that are poorly soluble in neutral/alkaline medium may have poor oral bioavailability due to reduced solubility in the small intestine and colon. Film coated pellets were prepared using two strategies to enhance drug release at high pH values. Firstly, pellets were coated with Eudragit RS/hydroxypropyl methylcellulose acetate succinate (HMAS) mixtures in proportions of 10:1 and 10:3, respectively. The enteric polymer, HMAS, would dissolve in medium at pH > 6 creating pores through the insoluble Eudragit RS membrane to increase drug release. Secondly, an acidic environment was created within the core by the inclusion of fumaric acid at concentrations of 5 and 10% in order to increase drug solubility. Both strategies enhanced drug release into neutral medium in dissolution studies using the pH change method to simulate GIT transit. Dissolution profiles of samples tested in pH 1.2 for 12 hr were compared with those using the pH change method (pH 1.2 for first 1.5 hr, pH raised to 6.8 for remaining 10.5 hr) using the area under the dissolution curve (AUC), the dissolution half-life (t50%), and the amount of drug released in 3 hr (A3hr) values. Both strategies enhanced drug release into neutral medium although the strategy using HMAS in the film was more effective. The formulation least affected by pH change was a combination of the two strategies, i.e., pellets containing 5% fumaric acid coated with Eudragit RS 12% w/w and HMAS 1.2% w/w.  相似文献   

6.
In this study drug pellets were coated with aqueous shellac coating formulations containing different amounts of polyvinyl alcohol (PVA), hydroxypropyl methylcellulose (HPMC), and carbomer 940. The coating level needed for enteric coating was determined. The influence of different amounts of PVA, HPMC, and carbomer on drug release and mechanism; the porosity, and the stability of shellac coatings was investigated. The results show that the incorporation of different concentrations of HPMC into shellac coatings, due to the increasing of pores, could considerably increase the drug release from the pellets in purified water. Moreover, the swelling effect of carbomer 940 leads to much more diffusivity through shellac coatings in water. In addition, PVA results in small cracking in the films and much more diffusion of drug in water. Furthermore, all coating systems containing different hydrophilic polymers that were used in the present work could prevent the dissolution of drug in simulated gastric juice for 2 hours. On the other hand, a rapid and complete release of drug within 45 minutes was observed in simulated intestinal fluid. Drug release from shellac coated pellets and ones containing different amounts of carbomer was affected between 3-6 months, whereas shellac coatings containing different amounts of PVA or HPMC show the same dissolution profiles with small deviation after 12 months.  相似文献   

7.
From the previous work (Part I), mucoadhesive formulae containing 5% CP/65% HPMC/30% lactose and 2% PC/68% HPMC/30% mannitol as well as formulae based on sodium carboxymethyl cellulose (SCMC) were selected. Medicated tablets were prepared using diltiazem hydrochloride (DZ) and metclopramide hydrochloride (MP) in two different doses (30 and 60 mg). The effect of drug and dose on the mucoadhesive properties and in-vitro drug release was evaluated. All formulae produced extended drug release (over 8 to 12 h). Polyacrylic acid based matrices (PAA) showed Fickian's diffusion release pattern for both drugs. SCMC ensured zero-order release for DZ, which deviated to anomalous behavior in case of MP. Doubling the dose significantly reduced the bioadhesion strength (p<0.05) with a slight improvement in drug release rate. The formulation of bilayer tablets containing drug-free layer and medicated layer enhanced the drug release without affecting the bioadhesive performance. The bilayer tablet formulated with 2% PC/68% HPMC/30% mannitol (PC2) was selected for studying the in-vivo metoclopramide release in four healthy volunteers. The tablet ensured controlled drug release for 12 h, in addition, good correlation (r=0.9398) was observed between in-vitro and in-vivo data. The effect of ageing on selected formulae containing DZ and MP, respectively, was studied. Storage at 40 degrees C and 75% relative humidity for 6 months didn't influence the mucoadhesive performance, however, an enhanced released rate was observed.  相似文献   

8.
Abstract

Weakly basic drugs, such as verapamil hydrochloride, that are poorly soluble in neutral/alkaline medium may have poor oral bioavailability due to reduced solubility in the small intestine and colon. Film coated pellets were prepared using two strategies to enhance drug release at high pH values. Firstly, pellets were coated with Eudragit® RS/hydroxypropyl methylcellulose acetate succinate (HMAS) mixtures in proportions of 10:1 and 10:3, respectively. The enteric polymer, HMAS, would dissolve in medium at pH>6 creating pores through the insoluble Eudragit RS membrane to increase drug release. Secondly, an acidic environment was created within the core by the inclusion of fumaric acid at concentrations of 5 and 10% in order to increase drug solubility. Both strategies enhanced drug release into neutral medium in dissolution studies using the pH change method to simulate GIT transit. Dissolution profiles of samples tested in pH 1.2 for 12 hr were compared with those using the pH change method (pH 1.2 for first 1.5 hr, pH raised to 6.8 for remaining 10.5 hr) using the area under the dissolution curve (AUC), the dissolution half-life (t50%), and the amount of drug released in 3 hr (A3 hr) values. Both strategies enhanced drug release into neutral medium although the strategy using HMAS in the film was more effective. The formulation least affected by pH change was a combination of the two strategies, i.e., pellets containing 5% fumaric acid coated with Eudragit RS 12% w/w and HMAS 1.2% w/w.  相似文献   

9.
The preparation of sustained-release (SR) drug pellets and their tablets was evaluated. Pellets containing indomethacin, pseudoephedrine hydrochloride (P-HCl), or pseudoephedrine (P) base were prepared by spraying a mixture of drug, Eudragit S-100 resins, dibutyl sebacate, and alcohol onto nonpareil seeds via the Wurster-column process. The oven-dried drug/Eudragit S-100 (DS) pellets were coated with different levels of Eudragit RS and Eudragit S-100 acrylic resins. Tablets containing P-HCl or P-base SR pellets, microcrystalline cellulose, and Methocel K4M were compressed. The solubility of the drug entity in the polymer solution was found to be the most critical factor affecting the yield and the physical properties of the resultant DS pellets. Dissolution studies of Eudragit RS coated drug pellets demonstrated that the release profiles depended not only on the physicochemical properties of the drug, particularly aqueous solubility, but also on the coating levels. The release rate profiles of the matrix tablets can be modified by varying the types of P-HCl or P-base SR pellets in the formulation. The release of drug from the matrix tablets is primarily matrix controlled.  相似文献   

10.
Nonpareil beads were coated with three different functional layers, namely inner chlorpheniramine maleate-loaded hydroxypropylmethylcellulose (HPMC, 4 mPa · s) deposition layer, middle HPMC (400 mPa · s) diffusion layer, and outer polyacrylic polymer (Eudragit RS30D) retention layer. The osmotic agents, including sodium chloride, glycine, citric acid, and disodium hydrogen phosphate, were incorporated in different amounts into the diffusion layer and the influences on drug release were studied. The osmotic agent competed with HPMC for imbibed water and subsequently caused more water influx owing to the osmotic pressure gradient. An appropriate amount of osmotic agent in the diffusion layer was necessary to exert its effect on retarding drug release. The osmotic effect on drug release was compromised with pellets at a higher coating level of the diffusion layer due to the extensive swelling and rupture of coat. The release parameters, including dissolution T50% and mean dissolution time, showed linear relationship with osmolalities of osmotic agents studied. The effect of the osmotic agent in the diffusion layer played an important role in determining the unique multiphase drug release profiles, particularly in the initial phase of dissolution, and reduced with depletion of the osmotic agent in the later phase of dissolution.  相似文献   

11.
Nonpareil beads were coated with three different functional layers, namely inner chlorpheniramine maleate‐loaded hydroxypropylmethylcellulose (HPMC, 4 mPa · s) deposition layer, middle HPMC (400 mPa · s) diffusion layer, and outer polyacrylic polymer (Eudragit RS30D) retention layer. The osmotic agents, including sodium chloride, glycine, citric acid, and disodium hydrogen phosphate, were incorporated in different amounts into the diffusion layer and the influences on drug release were studied. The osmotic agent competed with HPMC for imbibed water and subsequently caused more water influx owing to the osmotic pressure gradient. An appropriate amount of osmotic agent in the diffusion layer was necessary to exert its effect on retarding drug release. The osmotic effect on drug release was compromised with pellets at a higher coating level of the diffusion layer due to the extensive swelling and rupture of coat. The release parameters, including dissolution T50% and mean dissolution time, showed linear relationship with osmolalities of osmotic agents studied. The effect of the osmotic agent in the diffusion layer played an important role in determining the unique multiphase drug release profiles, particularly in the initial phase of dissolution, and reduced with depletion of the osmotic agent in the later phase of dissolution.  相似文献   

12.
Background: An extended release pellet formulation (ACES®) of the weakly basic drug propiverine was developed with spheronized citric acid crystals as starter cores. Method: Coated pellets, consisting of several layers of functional coatings, were manufactured by fluid bed coating. Different coating levels were examined with regard to their effect on drug release. Release profiles from the formulations with or without pH modifier and the free base as well as the hydrochloride salt of the active ingredient were compared. Results: The coated citric acid starter cores led to a controlled release of the drug and the pH modifier, resulting from modulation of the microenvironmental pH throughout the dissolution period of 17 hours. If microcrystalline cellulose pellets are used as starter cores drug release is strongly pH-dependent. Significant differences in the drug release profiles were observed between the formulations containing the free drug base and those with the hydrochloride salt as a result of an altered microenvironmental pH. Conclusion: The presented extended release pellet formulation is able to maintain a low pH within the pellet core and thus a sufficiently high drug solubility. By maintaining a low pH inside the pellets, a controlled drug release can be achieved.  相似文献   

13.
Numerous batches of nicotinic acid (niacin) pellets were coated to determine the optimum level of Surelease® coating which would exhibit in-vitro release patterns suitable for BID dosing. Various levels of Surelease, with and without the incorporation of a hydrophilic material, were studied. It was expected that a significantly high level of Surelease would be needed to obtain the desired in-vitro dissolution release rate for the water soluble drug. However, a coating level of 1.2% Surelease coating was found to have an in-vitro dissolution profile approximating that of a BID product. Scanning electron microscopic examination has shown that the surface of coating is smooth and uniform with the coating thickness of about 2 μm. The 2 months stability data showed no significant changes in the dissolution profiles.  相似文献   

14.
Extended release (ER) of water-soluble drugs from hydroxypropylmethylcellulose (HPMC) matrix mini-tablets (mini-matrices) is difficult to achieve due to the large surface area to volume ratio of the mini matrices. Therefore, the aims of this study were to control the release of a water-soluble drug (theophylline) from mini-matrices by applying ER ethylcellulose film coating (Surelease®), and to assess the effects of Surelease®:pore former (Opadry®) ratio and coating load on release rates. Mini-matrices containing 40%w/w HPMC K100M CR were coated with 100:0, 85:15, 80:20, 75:25 or 70:30 Surelease®:Opadry® to different coating weight gains (6–20%). Non-matrix mini-tablets were also produced and coated with 80:20 Surelease®:Opadry® to different coating weight gains. At low coating weight gains, nonmatrix mini-tablets released the entire drug within 0.5?h, while at high coating weight gains only a very small amount (<5%) of drug was released after 12?h. The gel formation of HPMC prevented disintegration of mini-matrices at low coating weight gains but contributed to rupture of the film even at high coating weight gains. As a result, drug release from mini-matrices was slower than that from nonmatrix mini-tablets at low coating weight gains, yet faster at high coating weight gains. An increase in the lag time of drug release from mini-matrices was observed as the concentration of Opadry® reduced or the coating weight gain increased. This study has demonstrated the possibility of extending the release of a water-soluble drug from HPMC mini-matrices by applying ER film coating with appropriate levels of pore former and coating weight gains to tailor the release rate.  相似文献   

15.
Abstract

Numerous batches of nicotinic acid (niacin) pellets were coated to determine the optimum level of Surelease® coating which would exhibit in-vitro release patterns suitable for BID dosing. Various levels of Surelease, with and without the incorporation of a hydrophilic material, were studied. It was expected that a significantly high level of Surelease would be needed to obtain the desired in-vitro dissolution release rate for the water soluble drug. However, a coating level of 1.2% Surelease coating was found to have an in-vitro dissolution profile approximating that of a BID product. Scanning electron microscopic examination has shown that the surface of coating is smooth and uniform with the coating thickness of about 2 μm. The 2 months stability data showed no significant changes in the dissolution profiles.  相似文献   

16.
The purpose was to investigate the effectiveness of an ethylcellulose (EC) bead matrix and different film-coating polymers in delaying drug release from compacted multiparticulate systems. Formulations containing theophylline or cimetidine granulated with Eudragit RS 30D were developed and beads were produced by extrusion-spheronization. Drug beads were coated using 15% wt/wt Surelease or Eudragit NE 30D and were evaluated for true density, particle size, and sphericity. Lipid-based placebo beads and drug beads were blended together and compacted on an instrumented Stokes B2 rotary tablet press. Although placebo beads were significantly less spherical, their true density of 1.21 g/cm(3) and size of 855 mum were quite close to Surelease-coated drug beads. Curing improved the crushing strength and friability values for theophylline tablets containing Surelease-coated beads; 5.7 +/- 1.0 kP and 0.26 +/- 0.07%, respectively. Dissolution profiles showed that the EC matrix only provided 3 h of drug release. Although tablets containing Surelease-coated theophylline beads released drug fastest overall (t(44.2%) = 8 h), profiles showed that coating damage was still minimal. Size and density differences indicated a minimal segregation potential during tableting for blends containing Surelease-coated drug beads. Although modified release profiles >8 h were achievable in tablets for both drugs using either coating polymer, Surelease-coated theophylline beads released drug fastest overall. This is likely because of the increased solubility of theophylline and the intrinsic properties of the Surelease films. Furthermore, the lipid-based placebos served as effective cushioning agents by protecting coating integrity of drug beads under a number of different conditions while tableting.  相似文献   

17.
Rosin-based polymers (R-1 and R-2) were synthesized and characterized for physicochemical properties, molecular weight (Mw), polydispersity (Mw/Mn), glass transition temperature (Tg), and thermogravimetry (TGA). Films of the polymers were cast on a mercury substrate by solvent evaporation technique. Free films were characterized for surface topography by scanning electron microscopy (SEM), water vapor transmission rate (WVTR), tensile strength, percentage elongation, and modulus of elasticity. The polymers were further evaluated as film coating materials by evaluating drug release from coated pellets with diclofenac sodium as a model drug. Drug was loaded on non-pareil seeds by a solution-layering technique and coated with varying concentrations of polymer solutions. Sustained release of the drug was observed from coated pellets. The newly synthesized rosin-based polymers promise considerable utility for pharmaceutical coating.  相似文献   

18.
This study was performed in order to develop a sustained-release pellet formulation containing venlafaxine hydrochloride (VEN), an extremely water-soluble drug, prepared by combination of wax matrices and double-layer coatings. The influence of both double-layer polymeric coats and wax matrices on the release of VEN from sustained-release pellets was investigated. The pellets were prepared by wet mass extrusion spheronization methods and then coated with a fluidized bed coater. For the pellets coated with Eudragit NE30D alone, a coating level of nearly 40% was required to pass the dissolution test compared with commercial product, and it was accompanied by an unacceptable lag time. The application of an alcohol-soluble polymeric subcoat, Opadry I, was added before the Eudragit NE30D coating process, which resulted in a marked delay in drug release. However, a faster release was observed for the formulation coated with a high subcoat level (10%) at the end of the dissolution test. A further delay in drug release was observed when a wax matrix, octadecanol, was added to the core pellet formulation. The kinetics of drug release changed from the Higuchi model to a zero order model and the predominant mechanism controlling drug release changed from diffusion to dissolution upon increasing the amount of octadecanol within the matrix pellets. In addition, the drug release was markedly influenced by the drug to matrix ratio. In conclusion, the 40% drug-loaded core pellets with double-layer coatings (8% Opadry I and 12% Eudragit NE30D) and 20% octadecanol matrix produced the desired profile for once-daily sustained release compared with the commercial product, and these pellets remained stable during storage.  相似文献   

19.
Controlled-release tablets (having near zero-order release) of diclofenac sodium, a water-soluble drug, were prepared using hydrophilic polymers like hydroxypropylmethylcellulose (HPMC), sodium carboxymethylcellulose (NaCMC), and Carbopol 934. Tablets were also prepared with mixtures of polymers of NaCMC, HPMC, and Carbopol 934. The optimum ratio of drug : HPMC : NaCMC was found to be 1 : 2 : 1. A combination of nonionic polymer HPMC and anionic NaCMC polymer matrix resulted in near zero-order release of diclofenac sodium. The results obtained were in agreement with the earlier reports. It is observed that increasing polymer content produces more sustained effect. A combination of nonionic polymer HPMC and anionic polymer NaCMC as the polymer matrix resulted in near zero-order release of diclofenac sodium. Drug release from the matrix did not follow Fick's law of diffusion and exhibited near zero-order release. Results of the bioavailability studies indicated that formulation 4 with drug : HPMC : NaCMC equal to 1 : 2 : 1 was similar to the marketed product Dicloran SR and showed better bioavailability than Voveran SR. A statistically significant difference was seen between Voveran SR and the other two products. A good in vitro–in vivo correlation was observed for these products.  相似文献   

20.
Controlled-release tablets (having near zero-order release) of diclofenac sodium, a water-soluble drug, were prepared using hydrophilic polymers like hydroxypropylmethylcellulose (HPMC), sodium carboxymethylcellulose (NaCMC), and Carbopol 934. Tablets were also prepared with mixtures of polymers of NaCMC, HPMC, and Carbopol 934. The optimum ratio of drug : HPMC : NaCMC was found to be 1 : 2 : 1. A combination of nonionic polymer HPMC and anionic NaCMC polymer matrix resulted in near zero-order release of diclofenac sodium. The results obtained were in agreement with the earlier reports. It is observed that increasing polymer content produces more sustained effect. A combination of nonionic polymer HPMC and anionic polymer NaCMC as the polymer matrix resulted in near zero-order release of diclofenac sodium. Drug release from the matrix did not follow Fick's law of diffusion and exhibited near zero-order release. Results of the bioavailability studies indicated that formulation 4 with drug : HPMC : NaCMC equal to 1 : 2 : 1 was similar to the marketed product Dicloran SR and showed better bioavailability than Voveran SR. A statistically significant difference was seen between Voveran SR and the other two products. A good in vitro-in vivo correlation was observed for these products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号