首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Surface integrity (SI) and, particularly, the residual stress profile, has a great influence on the fatigue life of machined aeronautical critical parts. Among the different cutting parameters that affect the final SI, tool geometry is one of the most important factors. In particular, tool nose radius determines the surface roughness, as well as the thermoplastic deformation of the workpiece. Indeed, the use of large tool nose radius in the industry enables (1) increasing the feed rate while keeping the roughness values below specifications and (2) reducing the influence of the tool wear in the surface roughness. Therefore, in this study, the influence of tool nose radius in the induced residual stress profile and work-hardened layer when face turning Inconel 718 is analysed for a cutting speed range between (30–70 m/min) and a feed rate range of (0.15–0.25 mm/rev). For this purpose, residual stress profiles and work-hardened layer were measured by x-ray diffraction method after machining with a 4 mm nose radius. Then, results have been compared against different tool nose radius studies carried out by other authors for the specified working conditions. Results revealed that residual stress profiles varied when machining with different nose radius for the studied range. In particular, the increase of the nose radius brought to a higher difference between surface tensile stress and subsurface compressive peak stress, which is attributed to an increase of the thermal effect. Moreover, thicker work-hardened layer (around 100 μm) was observed when machining with large-nose radius for the studied working conditions.  相似文献   

2.
The effect of flank wear on the topography of machined surfaces is investigated by studying its effect on the shape of the tool nose. For this purpose, turning experiments were performed to produce surfaces corresponding to different levels of flank wear. The distribution of flank wear at the tool nose during these experiments caused the nose radius to decrease, which when replicated on the machined surface resulted in narrower and deeper feedmarks. This change in the geometry of feedmarks was represented by the increase in the arithmetic average roughness of the surface profile heights.  相似文献   

3.
Wiper insert have the characteristics of achieving an excellent surface finish and improving the productivity in turning processes. Wiper insert can provide twice feed rate while maintaining the comparable surface roughness compared to that provided by the conventional insert. In the present study, surface topographies in finish turning with conventional and wiper inserts are investigated. The key element of this work is that the cutting edge path equation in the cutting tool coordinate system is transformed into the machine tool and workpiece coordinate system by the use of spatial coordinate transformation. Following that a surface topography simulation algorithm based on the cutting edge path equation and cutting parameters is put forward. The output of this work is that both the simulated surface topography and surface roughness profile are good agreement with the experimental results. Both the simulated and the actual machined surface results show that better surface topography is obtained in finish turning with the wiper insert than that with conventional insert. Burnishing effect of the wiper insert leads to half decrease of the Ra and Rz. The actual surface profiles are no longer regular wave shapes due to ploughing effect and side flow existing in the cutting zone. In addition, a surface roughness map has also been developed to optimize the selection of wiper radius and feed rate to satisfy the requirement of surface finishing with higher productivity. From the viewpoint of cutting tool design, the wiper radius with five times larger than tool nose radius can fully come into its role. This provides a novel insight into the design of wiper insert over conventional techniques. Above all, the proposed model gives a better prediction of surface roughness in finish turning process compared to the previous empirical and regression roughness models. The prediction of surface roughness in finish turning with wiper insert is also realized.  相似文献   

4.
使用PCBN刀具对不同淬硬状态工具钢Cr12MoV进行精密干式硬态车削试验,运用极差法分析切削速度、走刀量、切削深度、试件硬度、刀尖圆弧半径五个因素对工件表面温度影响的显著性,并得到了最优车削参数。试验表明:影响工件表面温度最显著的因素是工件淬火硬度,切削深度与走刀量的影响相当,刀尖圆弧半径的影响最小。  相似文献   

5.
ABSTRACT

In this paper, fuzzy subtractive clustering based system identification and Sugeno type fuzzy inference system are used to model the surface finish of the machined surfaces in fine turning process to develop a better understanding of the effect of process parameters on surface quality. Such an understanding can provide insight into the problems of controlling the quality of the machined surface when the process parameters are adjusted to obtain certain characteristics. Surface finish data were generated for aluminum alloy 390 (73 BHN), ductile cast iron (186 BHN), and inconel 718 (BHN 335) for a wide range of machining conditions defined by cutting speed, cutting feed rate and cutting tool nose radius. These data were used to develop a surface finish prediction fuzzy clustering model as a function of hardness of the machined material, cutting speed, cutting feed rate, and cutting tool nose radius. Surface finish of the machined part is the output of the process. The model building process is carried out by using fuzzy subtracting clustering based system identification in both input and output space. Minimum error is obtained through numerous searches of clustering parameters. The fuzzy logic model is capable of predicting the surface finish for a given set of inputs (workpiece hardness, cutting speed, cutting feed rate and nose radius of the cutting tool). As such, the machinist may predict the quality of the surface for a given set of working parameters and may also set the process parameters to achieve a certain surface finish. The model is verified experimentally by further experimentation using different sets of inputs. This study deals with the experimental results obtained during fine turning operation. The findings indicate that while the effects of cutting feed and tool nose radius on surface finish were generally consistent for all materials, the effect of cutting speed was not. The surface finish improved for aluminum alloy and ductile cast iron but it deteriorated with speed for inconel.  相似文献   

6.
In this paper, fuzzy subtractive clustering based system identification and Sugeno type fuzzy inference system are used to model the surface finish of the machined surfaces in fine turning process to develop a better understanding of the effect of process parameters on surface quality. Such an understanding can provide insight into the problems of controlling the quality of the machined surface when the process parameters are adjusted to obtain certain characteristics. Surface finish data were generated for aluminum alloy 390 (73 BHN), ductile cast iron (186 BHN), and inconel 718 (BHN 335) for a wide range of machining conditions defined by cutting speed, cutting feed rate and cutting tool nose radius. These data were used to develop a surface finish prediction fuzzy clustering model as a function of hardness of the machined material, cutting speed, cutting feed rate, and cutting tool nose radius. Surface finish of the machined part is the output of the process. The model building process is carried out by using fuzzy subtracting clustering based system identification in both input and output space. Minimum error is obtained through numerous searches of clustering parameters. The fuzzy logic model is capable of predicting the surface finish for a given set of inputs (workpiece hardness, cutting speed, cutting feed rate and nose radius of the cutting tool). As such, the machinist may predict the quality of the surface for a given set of working parameters and may also set the process parameters to achieve a certain surface finish. The model is verified experimentally by further experimentation using different sets of inputs. This study deals with the experimental results obtained during fine turning operation. The findings indicate that while the effects of cutting feed and tool nose radius on surface finish were generally consistent for all materials, the effect of cutting speed was not. The surface finish improved for aluminum alloy and ductile cast iron but it deteriorated with speed for inconel.  相似文献   

7.
Abstract

The present study focuses on the effects of cutting speed, feed rate and cutting tool material on the machining performance of carbon graphite material. Polycrystalline Diamond (PCD) cutting tools are used in machining experiments and its performance is compared with the tungsten carbide (WC) and Cubic Boron Nitride (CBN) tools. Machining performance criteria such as flank and nose wear and resulting surface topography and roughness of machined parts were studied. This study illustrates that feed rate and cutting tool material play a dominant role in the progressive wear of the cutting tool. The highest feed rate and cutting speed profoundly reduce the tool wear progression. The surface roughness and topography of specimens are remarkably influenced from the tool wear. Major differences are found in the wear mechanisms of PCD and WC and CBN cutting tools.  相似文献   

8.
In this paper, final surface accuracy in turning the super alloy Monel K-500 is studied. The experiments were conducted on the basis of the design of experiment methodology considering four inputs of tool nose radius, feed rate, depth of cut, and cutting speed, and three outputs of surface roughness, dimensional deviation, and tool wear. The aim of this work is to identify these three phenomena to achieve a desirable machined surface with acceptable finishing and the least deviation from nominal dimensions under different parametric conditions. It was observed that the quality of the machined surface in the direction of the machining length is not constant and, in some trials, the values of Ra increase considerably at the end of the machining length. The results show that cutting speed can improve surface accuracy, in a way that the more the cutting speed, the less the dimensional deviation. Less depth of cut and tool radius affect dimensional deviation as well. Although it has a small effect on dimensional deviation, feed rate plays the most important role in controlling tool wear. Finally, on the basis of Grey relational analysis, a simultaneous optimization is carried out on surface roughness, dimensional deviation, and tool wear values. In order to minimize these responses, optimal parametric conditions are presented. A satisfying correspondence was observed between the predicted results and the confirmation observations.  相似文献   

9.
H13淬硬模具钢精车过程的数值模拟   总被引:4,自引:0,他引:4  
闫洪  夏巨谌 《中国机械工程》2005,16(11):985-989
采用热力学耦合有限元方法研究了淬硬钢精车过程中切屑形成规律。运用H13 淬硬模具钢流动应力模型进行数值模拟,考查了H13淬硬模具钢精车过程中工艺参数对工件性能和刀具的影响。结果表明:切削速度愈高,进给量愈小,刀具刀尖半径愈大,则工件加工层上的静水拉应力愈小,表面质量愈好; 淬硬钢精车时径向力起主要作用,大于切削力;切削速度愈大,切削力和径向力则愈小,愈有助于改善工件加工层上的表面质量;切削速度、进给量和刀具刀尖圆角半径愈大,工件和刀具温度愈高,愈易导致刀具前刀面扩散磨损和刀具后刀面磨损。研究结论有助于优化H13淬硬模具钢精车过程中工艺参数选择和改进刀具镶片设计。  相似文献   

10.
This paper focused on high-speed milling of Al6063 matrix composites reinforced with high-volume fraction of small-sized SiC particulates and provided systematic experimental study about cutting forces, thin-walled part deformation, surface integrity, and tool wear during high-speed end milling of 65% volume fraction SiCp/Al6063 (Al6063/SiCp/65p) composites in polycrystalline diamond (PCD) tooling. The machined surface morphologies reveal that the cutting mechanism of SiC particulates plays an important role in defect formation mechanisms on the machined surface. In high-speed end milling of Al6063/SiCp/65p composites, the cutting forces are influenced most considerably by axial depth of cut, and thus the axial depth of cut plays a dominant role in the thin-walled parts deformation. Increased milling speed within a certain range contributes to reducing surface roughness. The surface and sub-surface machined using high-speed milling suffered from less damage compared to low-speed milling. The milling speed influence on surface residual stress is associated with milling-induced heat and deformation. Micro-chipping, abrasive wear, graphitization, grain breaking off, and built-up edge are the dominated wear mechanism of PCD tools. Finally, a series of comparative experiments were performed to study the influence of tool nose radius, average diamond grain size, and machining parameters on PCD tool life.  相似文献   

11.
12.
Machining is a complex process in which many variables can affect the desired results. Among them, surface roughness is a widely used index of a machined product quality and, in most cases, is a technical requirement for mechanical products since, together with dimensional precision, it affects the functional behavior of the parts during their useful life, especially when they have to be in contact with other materials. In-process surface roughness prediction is, thus, extremely important. In this work, an in-process surface roughness estimation procedure, based on least-squares support vector machines, is proposed for turning processes. The cutting conditions (feed rate, cutting speed, and depth of cut), parameters of tool geometry (nose radius and nose angle), and features extracted from the vibration signals constitute the input information to the system. Experimental results show that the proposed system can predict surface roughness with high accuracy in a fast and reliable way.  相似文献   

13.
Micro milling is a flexible and economical method to fabricate micro components with three-dimensional geometry features over a wide range of engineering materials. But the surface roughness and micro topography always limit the performance of the machined micro components. This paper presents a surface generation simulation in micro end milling considering both axial and radial tool runout. Firstly, a surface generation model is established based on the geometry of micro milling cutter. Secondly, the influence of the runout in axial and radial directions on the surface generation are investigated and the surface roughness prediction is realized. It is found that the axial runout has a significant influence on the surface topography generation. Furthermore, the influence of axial runout on the surface micro topography was studied quantitatively, and a critical axial runout is given for variable feed per tooth to generate specific surface topography. Finally, the proposed model is validated by means of experiments and a good correlation is obtained. The proposed surface generation model o ers a basis for designing and optimizing surface parameters of functional machined surfaces.  相似文献   

14.
The influence of the cutting edge micro geometry on cutting process and on tool performance is subject to several research projects. Recently, published papers mainly focus on the cutting edge rounding and its influence on tool life and cutting forces. For applications even more important, however, is the influence of the cutting edge radius on the integrity of the machined part. Especially for titanium, which is used in environments requiring high mechanical integrity, the information about the dependency of surface integrity on cutting edge geometry is important. This paper therefore studies the influence of the cutting edge radius on surface integrity in terms of residual stress, micro hardness, surface roughness and optical characterisation of the surface and near surface area in up and down milling of the titanium alloy Ti–6Al–4V. Moreover, the influence of the cutting edge radius on burr formation is analysed. The experiments show that residual stresses increase with the cutting edge radius especially in up milling, whereas the influence in down milling is less pronounced. The influence of the cutting edge radius on surface roughness is non-uniform. The formation of burr increases with increasing cutting edge radius, and is thus in agreement with the residual stress tests.  相似文献   

15.
In this paper, dry machining experiment of Ti-6Al-4 V was carried out to investigate the machining performance of a grooved tool in terms of its wear mechanisms and the effects of cutting parameters (cutting speed, feed rate, and cutting depth) on tool life and surface roughness of the machined workpiece. The results showed that chip-groove configuration substantially improved the machining performance of cutting tool. The main wear mechanisms of the grooved tool were adhesive wear, stripping wear, crater wear, and dissolution-diffusion wear. The resistance to chipping was enhanced due to the decrease of contact pressure of tool-chip interface. And the resistance to plastic deformation of tool nose was weakened at the cutting speed of more than 60 m/min. The appropriate cutting speed and feed rate were less than 70 m/min and 0.10 mm/r, respectively. With cutting speed increasing, the surface roughness of machined workpiece decreased. A high feed rate helped the formation of higher surface roughness except 0.21 mm/r. When cutting depth increased, tool nose curvature and phase transformation of workpiece material had great impact on surface roughness.  相似文献   

16.
An experimental investigation was conducted to determine the effects of tool cutting edge geometry on the cutting forces in finish turning, where the applied feed and depth of cut are small and often comparable with the tool edge radius. If a tool with large tool edge radius is used in finish turning, the ploughing effect begins to determine the machined surface. This paper presents the results of analytical considerations concerning the unit forces on a cutting edge. The aim of this paper is to indicate possibilities of modelling the unit forces and stress distribution based on cutting resistance. The forces calculated in the feed and cutting speed directions were projected onto the tangential and normal directions of the rounded cutting edge surface. An important assumption in all the considerations was that the thermo-mechanical properties of the materials used remained constant. The minimum thickness of cut was defined, and some characteristic points were identified dividing the cutting zone into three subregions: where a chip is formed, where the machined surface is formed and an unstable region.  相似文献   

17.
本文研究了单点金刚石切削加工表面微观形貌形成机理,建立了圆弧刃金刚石刀具超精密加工表面微观形貌的理论模型,重点分析了主轴转速、进给量、刀尖圆弧半径和振动等因素对超精密加工表面粗糙度的影响。  相似文献   

18.
Fe-based amorphous alloy, a new-type material, was developed as a special-purpose welt overlay for remanufacture. It was deposited on the worn-out part for resuming and upgrading part performance. The microstructure characteristics of the overlay was characterized, including microstructure, phase composition, thermostability, and microhardness. In order to get a comprehensive insight to the machining process of amorphous overlay, this paper presents an experimental investigation into the effect of various machining parameters and tool geometry (Edge) on the surface roughness, tool wear, chip morphology, and surface damage. Comparing larger rake angle of 15°and smaller nose radius of 0.4 mm with 5° and 0.8 mm at the same cutting parameters, we found that larger rake angle of 15° and smaller nose radius of 0.4 mm increased the R a surface roughness parameter. In the tests, crater wear was not observed, and the friction and wear on the minor cutting edge wear were heavy due to the spring back of the machined surface. In brief,abrasion, adhesion, fatigue, and chipping are the main wear mechanism. As the feed rate reduced and the depth of cut increased (from feed rate?=?0.06 mm/rev and depth of cut?=?0.3 mm to feed rate?=?0.09 mm/rev and depth of cut?=?0.2 mm), a number of physical changes occurred in the chip including reduced distance between serrations, increased shear band angle, and changed chip morphology from spiral to ribbon shape. The results show that strain and strain rate rises in the chips’ inside with the increase in cutting temperature. When the thermal softening exceeded strain hardening, the shear resistance decreased rapidly. Thus, the free surface of the chip presents the nodular and lamella structure. It was noted that specimens generated by larger rake angle of 15° and smaller nose radius of 0.4 mm showed poor surface roughness as well as extensive surface damage.  相似文献   

19.
The significant cutting disturbances appearing in hard turning processes cause shifting of the process dynamics. Therefore, in this paper the turning process is evaluated by radial force variation analysis, as a function of depth of cut, tool nose radius and effective lead edge angle, through static and dynamic indicators. The tool/workpiece contact zone is, in the case of hard turning, mostly limited within the tool nose radius region. Therefore in this paper, geometry of the tool/workpiece contact line is analyzed. The depth of cut is calculated as a geometric difference of prior and instantaneous tool pass profiles. The calculated values of the depth of cut are time dependant, and can vary by 60%. Various process monitoring techniques have been used to identify and confirm these variations, as well as quantify the level of process stability. The results obtained confirm the assumption that effective lead edge angle and radial force are influenced by depth of cut, feed rate and tool nose radius. Additionally, it is shown that low values of depth of cut and geometry of prior pass-machined surface valleys shift the hard turning process to a dynamically more sensitive level as compared the case of soft machining.  相似文献   

20.
The present study reports the effect of different process parameters on machining forces, surface roughness, dimensional deviation and material removal rate during hard turning of EN31, SAE8620 and EN9 tool steels. Feed rate followed by hardness, cutting speed and nose radius-depth of cut significantly affected machining forces whereas feed rate had the largest effect on surface roughness. The four responses were subsequently optimized for both rough and finish machining using genetic algorithm to determine the optimum combination of input parameters. Machined surfaces were subsequently analyzed using XRD followed by analysis of grain size and crystallite size of the machined samples and SEM analysis. Higher chromium content was observed at the machined surface as manganese dissolves in cementite and may replace iron atoms in the cementite lattice after machining. High heat is generated when machining at higher cutting speeds causing severe strain. The depth of the white layer decreases with increasing tool nose radius and increases at larger feeds because of greater heat generation. The SEM observations showed a smooth pattern with very low undulations with almost no crack damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号