首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
借助金相显微镜、扫描电镜、能谱分析仪、显微硬度计及电子万能试验机等研究了Mg-9Zn-xAl(x=2%、4%、6%)合金的显微组织和力学性能。试验结果表明:随着Al含量的增加,晶粒尺寸呈不断减小的趋势,合金中的第二相由断续状分布向连续网状转变;当Al含量为2%和4%时,合金主要由α-Mg基体相、τ-Mg32(Al,Zn)49相和MgZn相组成,当Al增加到6%时,合金主要由α-Mg基体相、τ-Mg32(Al,Zn)49相和少量Mg5Zn2A12相组成。抗拉强度随着Al含量的增加呈先增大后减小的趋势,当Al含量为4%时,抗拉强度为171MPa;伸长率和硬度随着Al含量的增加而逐渐增加,当Al含量为6%时,硬度为133HV。  相似文献   

2.
定量研究了大挤压比(81:1)条件下Mg-6xZn-xY合金的微观组织和力学性能。结果表明:随着Zn、Y含量的增加,准晶相含量逐渐增加,α-Mg基体平均晶粒尺寸先减小后增大,Mg-6Zn-1Y合金中的α-Mg平均晶粒尺寸最小为2.9μm,且尺寸分布最均匀,其标准差也达到最小,为0.77μm。随着Zn、Y含量的增加,Mg-Zn-Y合金的屈服强度和抗拉强度逐渐增大,延伸率逐渐降低。相比于α-Mg基体晶粒细化,细小准晶相含量的增加对提高Mg-6xZn-xY合金强度的作用更明显。  相似文献   

3.
采用金属型重力铸造方法制备了Mg-6Al-2Nd-2Ca和Mg-6Al-2Nd-2Ca-1.2Zn合金,并对铸态合金进行均匀化处理和热挤压加工,通过OM、XRD、SEM、EDS、TEM和万能试验机等分析测试方法,研究了Zn元素对Mg-6Al-2Nd-2Ca合金显微组织和力学性能的影响。结果表明:Zn元素的加入有助于细化晶粒,Zn在合金中主要以固溶体的形式存在,降低了Al在α-Mg基体中的固溶度,生成更多的Al-Nd相。2种合金经过均匀化处理后,与铸态相比显微组织更加均匀,第二相数量略有减少。经热挤压后,2种合金中的硬脆相被挤碎,晶粒得到明显的细化,力学性能明显提升,在细晶强化、第二相强化的共同作用下Mg-6Al-2Nd-2Ca-1.2Zn合金表现出优良的力学性能,其抗拉强度、屈服强度和断后伸长率分别为294.0 MPa、197.1 MPa、11.6%。  相似文献   

4.
在室温条件下进行了铸态Mg-6Zn-2Er合金的室温拉伸试验。结果表明,该合金的断裂伸长率为5.6%。粗大的第二相,特别是粗大的Mg3Zn3Er2相(W相)是合金失效断裂的主要原因。这表明W相不能有效地实现应力的传递,导致自身内部有裂纹产生。比较可知,合金的基体与第二相间的界面比较稳定,没有裂纹产生。因此,合金第二相的尺寸、分布、形貌和类型显著地影响合金的塑性变形行为。  相似文献   

5.
对未均匀化处理的AZ61合金进行热挤压及不同制度的热处理,采用拉伸实验、硬度及电阻率测试、显微组织观察等方法研究了退火及时效热处理对挤压态AZ61合金力学性能的影响。结果表明:低温退火未使合金的抗拉强度下降,而高温退火使合金的抗拉强度明显降低;退火后的时效由于有少量第2相析出,能显著提高合金的屈强比,同时降低了塑性。此外,热挤压后的直接时效对合金的力学性能几乎没有影响。  相似文献   

6.
热处理对挤压态AZ61合金力学性能的影响   总被引:2,自引:0,他引:2  
刘子娟  刘楚明  周海涛 《铸造》2006,55(9):903-906
对未均匀化处理的AZ61合金进行了热挤压及不同制度的热处理,采用拉伸试验、硬度及电阻率测试、显微组织观察等方法研究了退火及时效热处理对挤压态AZ61合金力学性能的影响。结果表明:低温退火未使合金的抗拉强度下降,而高温退火使合金的抗拉强度明显降低;退火后的时效由于有少量第二相析出,能显著提高合金的屈强比,同时降低了塑性。此外,热挤压后的直接时效对合金的力学性能几乎没有影响。  相似文献   

7.
采用金属型铸造方法制备了Mg-6Zn-xCu(x=1%、3%、5%)镁合金,并通过光学显微镜、X射线衍射和扫描电镜及力学性能测试等手段研究了Cu含量对合金的显微组织和力学性能的影响。结果表明:Cu在合金中主要以CuMgZn相存在,且随着Cu量的增加,其数量增加;在凝固过程中,CuMgZn富集在已结晶的α-Mg表面,阻碍了其长大,从而细化了晶粒,但过量的CuMgZn偏聚晶界偏聚,引起局部的应力集中,对合金的力学性能产生负面影响;随着Cu含量的增加,合金的力学性能逐渐降低,加入1%Cu时,合金的抗拉强度和伸长率达到最大值,分别为208MPa和13.5%;随着Cu含量的增加,拉伸断口由准解理断裂向解理断裂和沿晶断裂转变。  相似文献   

8.
利用X射线衍射、差示扫描量热(DSC)、透射电镜(TEM)研究了快速凝固Al 4Cu Mg 3Fe 4Ni (质量分数,% )合金急冷态和退火态的微观组织,同时测定了该合金的显微硬度。结果表明:快凝合金急冷态组织为过饱和αAl基固溶体和Al3Ni相;当快凝合金经40 0℃Xw 1h处理后,有少量S相(CuMgAl2 )析出;经40 0℃Xw 9h处理后,出现了FeNiAl9弥散相;在合金组织中未见Al Cu Fe和Al Cu Ni相。随时效时间的增加,快凝合金的显微硬度不断增加,达到峰值后硬度缓慢下降,之后随FeNiAl9析出,硬度又重新增加。  相似文献   

9.
Al-Pb-Si-Sn-Cu轴瓦合金的微观结构及特征   总被引:2,自引:0,他引:2  
采用机械合金化、冷压与热挤压法制备了Al-15%Pb-4%Si—1%Sn—1.5%Cu(质量分数,%)轴瓦合金。试验结果表明,块体材料的组织分布很均匀。Pb粒子细小均匀弥散分布在Al基体上,呈纳米晶粒。Al基体晶粒大小约1.2μm,在其晶界和晶粒内都有粒子析出。在Al基体上还分布着由非晶和亚微米晶粒构成的混合相。研究表明,该工艺是制备Al-Pb系列轴瓦合金的较佳方法;并为制备室温不互溶、高温存在很宽固溶间隙、有较大密度差异的合金组元且组织均匀的合金奠定了工艺基础。  相似文献   

10.
采用光学显微镜、扫描电镜、万能材料试验机研究了热挤压后Mg-2Ca-5Zn镁合金的显微组织与力学性能.结果表明,挤压Mg-2Ca-5Zn合金具有较细的晶粒组织,第二相Ca2 Mg6Zn3与Mg2Ca被破碎,其分布变得细小弥散;挤压Mg2Ca-5Zn合金比铸造镁合金的力学性能有较大提高,其抗拉强度与伸长率分别达到368 MPa和11.8%.  相似文献   

11.
Mg-6Al-0.3Mn-xY(x=0,0.3,0.6 and 0.9,mass fraction,%) magnesium alloys were prepared by casting and hot rolling process.The influence of yttrium on microstructure and tensile mechanical properties of the AM60 magnesium alloy was investigated.The results reveal that with increasing the yttrium content,Al2Y precipitates form and the grain size is reduced.The ultimate strength,yield strength and elongation at room temperature are 192 MPa,62 MPa and 12.6%,respectively,for the as-cast Mg-6Al-0.3Mn-0.9Y alloy.All ...  相似文献   

12.
研究了Mg-6Gd-4Y(wt.%)合金与添加1%Zn的Mg-6Gd-4Y-1Zn合金的显微组织与力学性能。结果表明:Mg-6Gd-4Y合金的铸态组织由?-Mg基体和Mg24(GdY)5两相组成。而含有Zn的Mg-6Gd-4Y-1Zn合金的铸态组织则主要由α-Mg,Mg24(GdY)5和具有18R-LPSO结构的Mg12Y1Zn1相组成。挤压后,在含锌合金中发现了14H-LPSO相,分布于条状分布的Mg12Y1Zn1之间。14H-LPSO相的形成机理为沉淀析出,反应可表示为α-Mg′→α-Mg + 14H。Zn含量对β系列沉淀物没有明显的影响。在Mg-6Gd-4Y合金和Mg-6Gd-4Y-1Zn合金上进行的时效(T6和T5)处理均引起β"析出相的形成。T6处理后的Mg-6Gd-4Y-1Zn合金具有高拉伸强度和良好的延展性,屈服强度(YS),抗拉强度(UTS)和延伸率分别为309MPa,438MPa和6.8%。这是18R-LPSO相与细小弥散分布的14H-LPSO相和β"沉淀相共同作用的结果。  相似文献   

13.
对铸态ZM21镁合金在不同温度(200,250,300和350℃)与不同挤压比(4:1,9:1,16:1)下进行挤压。借助光学显微镜、X射线衍射仪(XRD)和拉伸试验来研究挤压参数(温度和挤压比)的影响。挤压钛合金的光学显微组织呈现出不同阶段的再结晶组织,从部分到完全再结晶,进而影响到合金的力学性能。较高的挤压温度会导致生成粗大的晶粒,然而,较高的挤压比导致细小的晶粒。在250℃、挤压比9:1下挤压后,合金的极限拉伸强度从160MPa增加到316MPa。  相似文献   

14.
制备了不同Y含量的Mg-5Al-1Sr-2Ca-xY(x=0,1,2,5)合金试样,采用光学显微镜(OM)、扫描电子显微镜(SEM)、X射线衍射仪(XRD)、材料试验机等观察测试合金的微观组织和力学性能。结果表明,未添加Y时,合金晶粒大小不均匀,且多呈柱状,晶内有较多的点状化合物;Y含量1%时,晶粒细化、球化且大小较均匀;Y含量2%时,晶粒趋于柱状;Y含量5%时,晶粒形状不规则、大小极不均匀。随Y含量的增加,室温和高温力学性能呈先升后降趋势,最高点为Y含量1%,其室温和高温抗拉强度分别较无Y合金提高了约33.8%和25.4%。  相似文献   

15.
本文研究了钙对Mg-4Zn合金组织,织构及力学性能的影响。铸态Mg-4Zn合金包含α-Mg相和MgZn相,Ca的加入还生成了Ca2Mg6Zn3三元相。结果表明,Ca显著细化挤压板材的晶粒尺寸,弱化板材织构。沿着板材横向,Mg-4Zn-0.3Ca合金的屈服强度为163MPa,最终抗拉强度达到260MPa。并且,加钙后的合金延伸率从Mg-4Zn合金的19%提高到24%。本文分析了合金的再结晶机制,织构演变机理和强韧化机制,另外,合金力学性能与各向异性也得到了分析。  相似文献   

16.
对AZ80镁合金管材的挤压工艺进行研究,对挤压前后材料的组织与力学性能进行分析。结果表明,经过热挤压后,镁合金的晶粒细化,力学性能有较大提高。晶粒尺寸由挤压前铸态的28μm细化到挤压后的4μm,抗拉强度由162 MPa提高到265 MPa,屈服强度由74 MPa提高到180 MPa,伸长率由4%提高到14%。随着挤压比的增加,晶粒细化明显,伸长率和屈服强度增加。对于挤压AZ80镁合金管材,合理的挤压工艺参数:挤压比为18.2,坯料温度为390℃,模具预热温度为360℃,挤压速度为1 mm/s,凹模锥半角为60°-70°。  相似文献   

17.
研究铸态和挤压态Mg-8.5Gd-2.3Y-1.8Ag-0.4Zr合金的显微组织、时效强化和力学性能。铸锭在T4处理后分别于400、450和500°C进行挤压,挤压比为10:1。在细晶强化和析出强化的共同作用下,于400°C挤压的样品经T5处理后可以得到最优的力学性能,所得的晶粒尺寸约为5.0μm,其初始和峰值硬度分别为HV109和HV129。室温下的拉伸屈服强度、抗拉强度和伸长率分别达到391MPa、430MPa和5.2%。  相似文献   

18.
Mg-6Zn-1Y-Zr镁合金在热锻或热挤压过程中发生了动态再结晶.合金组织细化,但不均匀,平均晶粒尺寸约10 μm.挤压态材料经350℃×30 min再结晶退火转变为等轴细晶组织,平均晶粒尺寸已达到5μm左右.合金在变形处理后有新的第二相析出,且合金的力学性能有很大提高.其中锻态Mg-6Zn-1Y-Zr合金的σb达到265 MPa,σ0.2达155 MPa,挤压态合金的σb达到330 MPa,σ0.2达185MPa.  相似文献   

19.
The Mg-6.5Gd-1.3Nd-0.7Y-0.3Zn alloy ingot and sheet were prepared by casting and hot extrusion techniques,and the microstructure,age hardening behavior and mechanical properties were investigated.The results show that the as-cast alloy mainly containsα-Mg solid solution and compounds of Mg5RE and Mg24RE5(RE=Gd,Y and Nd)phases.The grain size is refined after hot extrusion,and the Mg5RE and Mg24RE5 compounds are broken during the extrusion process.The extruded alloy exhibits remarkable age hardening response and excellent mechanical properties in the peak-aging state.The ultimate tensile strength,yield strength and elongation are 310 MPa,201 MPa and 5.8%at room temperature,and 173 MPa,133 MPa and 25.0%at 300℃,respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号