首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
采用线型酚醛(Novolac)与微胶囊红磷(MRP)复配阻燃,制备了无卤阻燃丙烯腈-丁二烯-苯乙烯(ABS)复合材料。研究了Novolac/MRP质量比和用量对阻燃ABS性能的影响。研究结果表明:Novolac/MRP的质量比为3/2,总量为15%(质量分数)时,可以制备极限氧指数(LOI)为26.7%,垂直燃烧(UL94)V-0级的无卤阻燃ABS;Novolac的酚羟基与MRP燃烧产生的聚磷酸在高温下发生的脱水成炭反应减缓了ABS的分解;SEM炭层形貌分析表明:Novolac/MRP复合阻燃ABS材料燃烧表面形成了平整、致密的炭层,该炭层能够有效地隔绝燃烧过程所产生的易燃气体及热量,起到较好的阻燃效果。  相似文献   

2.
《塑料科技》2015,(9):38-41
选用乙烯-醋酸乙烯共聚物/改性氢氧化镁/微胶囊红磷(EVA/改性MH/MRP)为复合阻燃体系,研究体系的力学性能及阻燃性能,并通过扫描电镜观察材料燃烧后炭层的表面形貌。结果表明:当LLDPE/EVA/改性MH/MRP添加比例为60:40:70:10时,拉伸强度为11.3 MPa,断裂伸长率为353%,氧指数为31.4%,垂直燃烧试验通过UL 94V-0级,体系具有良好的阻燃协效作用和力学相容性。  相似文献   

3.
采用酚醛树脂、磷酸酯、硼酸锌或聚硅氧烷组成复合阻燃剂,与丙烯腈–丁二烯–苯乙烯(ABS)树脂通过熔融挤出混合制备无卤阻燃ABS复合材料。分别研究磷酸酯、聚硅氧烷、硼酸锌用量对无卤阻燃ABS复合材料阻燃性能的影响,考察了阻燃ABS复合材料的热分解行为,观察了无卤阻燃ABS复合材料燃烧产物表面的炭层形貌。实验结果表明,酚醛树脂/磷酸酯复合成炭阻燃体系能有效提高ABS的阻燃性能;硼酸锌和聚硅氧烷对ABS/酚醛树脂/磷酸酯体系阻燃存在阻燃协同效应,提高成炭量;与聚硅氧烷相比,硼酸锌阻燃协同效果较好。  相似文献   

4.
MRP/MH/EG协同阻燃HDPE的性能研究   总被引:1,自引:0,他引:1  
以微胶囊化红磷(MRP)、氢氧化镁(MH)及可膨胀石墨(EG)为阻燃剂,采用熔融挤出法制备了多组高密度聚乙烯(PE-HD)阻燃复合材料。采用氧指数测试、垂直燃烧测试、红外光谱分析、激光拉曼光谱分析、热重-差热分析、扫描电子显微镜分析及拉伸性能测试等方法对复合材料的阻燃性能、热稳定性、力学性能和断面的微观形貌进行了研究,并探讨了阻燃机理。结果表明,单独使用EG时阻燃效果差,但将EG与MRP、MH复配使用能有效改善材料的阻燃性能;当PE-HD/MH /MRP /EG = 100/35/15/5(质量份,下同)时,复合材料的氧指数为28.5 %,垂直燃烧达到UL 94 V-0级,而阻燃剂的加入对材料拉伸性能的影响并不是很大;SEM分析表明, EG与PE-HD基材有很好的相容性,而MRP或MH与PE-HD基材的相容性较差。  相似文献   

5.
以乙烯-乙酸乙烯酯共聚物(EVA)为基体树脂,以氰尿酸三聚氰胺(MCA)为阻燃剂,研究了EVA/MCA复合体系的燃烧性能,并对燃烧炭层进行了分析.结果表明,MCA改善了EVA/MCA体系的燃烧性能,消除了燃烧滴落现象,抑制了黑烟的产生.随着MCA添加量逐渐增大,氧指数由18.0%提高到26.1%,当MCA添加量为80质量份时,体系成为难燃材料.当MCA添加量分别为50,60,80质量份时,EVA,MCA复合体系的阻燃级别依次可以达到FV-2级,FV-1级,FV-0级.随着MCA添加量的增加,燃烧试样表面的炭层逐渐增多,致密程度提高;随着燃烧时间的增加,燃烧试样内部的孔洞增多,孔径变大.  相似文献   

6.
分别采用两种有机膦酸铝阻燃剂三(二乙基亚膦酸)铝(OP1230)及OP1312[62%三(二乙基亚膦酸)铝+35%三聚氰胺聚磷酸盐+3%硼酸锌]与热塑性聚氨酯(TPU)制备了阻燃TPU复合材料。首先通过粒径分析仪和热失重分析仪研究了两种阻燃剂的粒径和热稳定性,进一步通过氧指数测定仪、水平垂直燃烧测试仪、拉力试验机、热失重分析仪和扫描电子显微镜研究了两种阻燃TPU复合材料的阻燃、力学及热稳定性能。结果表明,随着阻燃剂用量的增加,复合材料在燃烧时的熔滴现象明显减少。当OP1230的质量分数为30%时,复合材料阻燃级别达到FV-0等级,氧指数与纯TPU差别很小;当OP1312的质量分数为30%时,复合材料阻燃级别为FV-1等级,氧指数从纯TPU的23%增加到27%。在相同的阻燃剂用量下,添加OP1312的复合材料的力学性能均高于添加OP1230的复合材料。OP1230可有效提高成炭量,炭层致密,阻燃效果好;而OP1312成炭量小,阻燃效果略差。  相似文献   

7.
以氢氧化镁(MH)、氢氧化铝(ATH)为无卤阻燃剂,微胶囊红磷(MRP)为阻燃增效剂,通过共混挤出制备了一系列的阻燃聚烯烃弹性体(POE)复合材料。采用垂直燃烧、极限氧指数、热失重、傅里叶红外、微型量热分析等方法研究了其阻燃性能及阻燃机理。研究表明,同MH/POE和ATH/POE相比,MH/ATH/POE有较好的阻燃协效性,氧指数达到25.0%,残炭量达到31.7%,但垂直燃烧性能较差(测试无级别)。继续加入6份MRP后,体系的阻燃性能明显提高,其氧指数上升至27.5%,残炭量高达35.2%,垂直燃烧达到V-0级。表明MH/ATH和MRP对POE具有显著的协同阻燃作用。FTIR和TGA实验结果显示,MRP/MH/ATH/POE复合材料燃烧后生成了磷酸及其衍生物,增强了体系的成炭能力,促进了凝聚相阻燃效果,MRP阻燃机理主要表现为凝聚相阻燃。  相似文献   

8.
以热塑性聚烯烃弹性体(TPO)为基体、氢氧化镁(MH)为主阻燃剂、氢氧化铝(ATH)为协同阻燃剂制备了TPO/MH/ATH阻燃复合材料,采用氧指数(OI)、垂直燃烧及热重分析(TGA)等手段分析了TPO/MH/ATH复合体系的阻燃性能和阻燃机理,并研究了该复合体系的拉伸行为和流变性能。结果表明:同TPO/MH复合体系相比,TPO/MH/ATH复合体系的阻燃性能明显提高,其OI值提高至32.4%,阻燃等级达到FV-0级,残炭层更加紧密;复合体系的最大分解速率温度可达478.5℃,分解速率降低,热稳定性有所提高;同时,复合体系的屈服强度明显降低,断裂伸长率显著增大(380.4%),比TPO/MH复合体系提高了2倍;另外,ATH的加入对复合体系剪切黏度的影响不大。  相似文献   

9.
通过极限氧指数测定(LOI)、垂直燃烧试验和锥型量热分析研究了六苯氧基环三磷腈(HPTCP)对聚碳酸酯/丙烯腈-苯乙烯-丁二烯共聚物(PC/ABS)合金的阻燃作用。结果表明:HPTCP对PC/ABS具有良好的阻燃效果。当添加量为15%时,阻燃PC/ABS的LOI为25.0%,阻燃等级达FV-0,并且与未阻燃PC/ABS相比,燃烧时的热释放速率、总热释放量、最高热释放速率、平均热释放速率,平均有效燃烧热和质量损失明显降低;热重分析表明,HPTCP对PC/ABS合金的热稳定性影响较小。热重和残余物分析结果表明,HPTCP主要是通过凝聚相产生阻燃作用,HPTCP的添加可有效抑制PC/ABS的分解,促进它成炭,形成膨胀性炭层,该炭层通过隔热、隔氧及阻止PC/ABS分解产物的挥发而产生阻燃作用。  相似文献   

10.
分别采用十溴二苯乙烷(DBDPE)、四溴双酚A(TBBA)、溴代三嗪(Br N)为阻燃剂和三氧化二锑、氢氧化铝、硅酮粉、抗滴落剂等协效阻燃剂复配,与丙烯腈–丁二烯–苯乙烯塑料(ABS)通过熔融共混挤出制备阻燃ABS复合材料,对比了这3种阻燃剂对复合材料阻燃性能、力学性能、熔体流动性能和热性能的影响。结果表明,添加质量分数为8%的DBDPE即可使ABS复合材料垂直燃烧等级达到V–0级,热变形温度达到74.3℃,但DBDPE对复合材料拉伸、冲击性能及熔体流动性能有较大的负面影响;当3种阻燃剂质量分数均为12%时,添加Br N的复合材料的垂直燃烧等级达到V–0级,缺口冲击强度和热变形温度最高,分别为27.0 k J/m2和74.7℃,热稳定性最好,但拉伸和弯曲强度较低,在相同阻燃剂用量下,添加TBBA的复合材料拉伸、弯曲强度和MFR最大,分别为41.6,60.5 MPa和22.3 g/10 min,但其垂直燃烧等级仅为V–1级。  相似文献   

11.
将有机蒙脱土(OMMT)和水滑石(LDH)分别与膨胀阻燃剂(IFR)构成阻燃体系,对长玻纤增强聚丙烯(LGFPP)复合材料进行阻燃改性,通过极限氧指数(LOI)和锥形量热仪(CONE)测试,对比研究了两种体系阻燃LGFPP的阻燃性能及阻燃机理。结果表明:当OMMT质量分数为2%时,复合材料的LOI达到最大值24.2%,且垂直燃烧达到了UL-94 V-0级;当LDH质量分数为1%时,LOI达到最大值23.3%,而垂直燃烧等级仍为V-1级。以炭层阻隔的IFR/OMMT体系比以稀释阻燃的IFR/LDH体系更加有效地改善LGFPP的阻燃性能。  相似文献   

12.
膨胀型阻燃体系阻燃LDPE性能的研究   总被引:2,自引:1,他引:1  
比较了Ⅰ型聚磷酸铵(n>30)和Ⅱ型聚磷酸铵(n>1000)的基本性质及其阻燃低密度聚乙烯复合材料的力学性能和阻燃性能,研究表明:聚磷酸铵(APP)提高了复合材料的氧指数LOI,延缓复合材料的分解,但会造成复合材料力学性能的下降,这一点不因APP种类而改变。然而,聚磷酸铵的表面改性会改善APP在LDPE中的分散,提高二者的相容性,有利于复合材料力学性能的提高。  相似文献   

13.
研究了季戊四醇磷酸酯三聚氰胺盐微胶囊化的多聚磷酸铵(KDIFR)、三聚氰胺-甲醛树脂微胶囊化的多聚磷酸铵(MAPP)和多聚磷酸铵(APP) 3种膨胀型阻燃剂,及引入硼、铝元素对膨胀型阻燃环氧树脂(EP)阻燃性能的影响,采用极限氧指数法和水平燃烧法测试材料的燃烧性能。结果表明,3种阻燃剂中APP的阻燃效果最好,当APP/EP为0.3(质量比,下同)时,其极限氧指数为32.2 %,达到难燃级水平;在EP/APP中引入铝元素或硼元素可使阻燃效果提高,硼、铝共存时阻燃效果更加突出,加入APP总量0.8 %的硼酸铝可使EP/APP的自熄时间由48 s降为24 s;热分析结果表明,APP热分解吸热恰与EP的热降解产物燃烧放热相匹配,这是使EP/APP的阻燃性能提高的主要原因;在EP/APP中引入硼和铝元素可明显促进EP/APP成炭,起到协同阻燃作用。  相似文献   

14.
利用含磷三嗪环低聚物(PMPT)及其复合阻燃剂制备阻燃聚丙烯(PP),探讨了PMPT和多聚磷酸胺/季戊四醇(APP/PER)/PMPT的用量对阻燃PP极限氧指数、燃烧参数的影响,并用扫描电子显微镜观察了剩余炭层的微观形貌,推测了阻燃剂PMPT的阻燃机理.结果表明,随着阻燃剂PMPT用量的增加,阻燃PP的氧指数逐渐增大;APP,PER,PMPT三者有很好的协同阻燃作用;PMPT阻燃机理遵循凝聚相阻燃机理.  相似文献   

15.
陈先敏 《塑料工业》2014,42(9):109-112
研究了不同配比的红磷阻燃母料(RPM)与氢氧化镁(MH)协同阻燃高抗冲聚苯乙烯(HIPS)体系的阻燃性能和机械性能。并选取最佳红磷阻燃母料与氢氧化镁的配比,再分别与其他无卤阻燃剂如酚醛树脂、氧化锌、氰尿酸三聚氰胺盐、有机纳米蒙脱土复配来共同阻燃HIPS,并分别对其体系的机械性能和阻燃性能进行了研究。结果表明,在RPM/MH质量比为1,总质量分数为30%时,与7%的酚醛树脂或有机纳米蒙脱土复配,都可以使阻燃HIPS材料达到1.6 mm UL94的V-1级。  相似文献   

16.
采用一种新型含磷硅高分子阻燃剂(EMPZR)与聚磷酸铵(APP)、多聚磷酸密胺(MPP)复配成膨胀型阻燃剂(IFR),并对聚丙烯(PP)进行阻燃。当APP/MPP/EMPZR质量比为15/10/15时,所制得的复合材料的氧指数达到33.0 %,垂直燃烧达到UL 94 V 0级;与纯PP相比,拉伸强度、弯曲强度和冲击强度都没有下降;热失重分析表明,阻燃PP材料在600 ℃时的残炭量为21.14 %,成炭率显著提高;扫描电镜对残炭形貌的表征以及氧指数测试前后阻燃PP材料的红外图谱分析证实了EMPZR与APP、MPP在PP中有良好的协效阻燃作用。  相似文献   

17.
18.
19.
氯溴代烷基磷酸酯阻燃剂的合成与阻燃性研究   总被引:1,自引:0,他引:1  
本文对新戊二醇、溴素、三氯氧磷和环氧乙烷等为原料合成了氯溴代烷基磷酸酯阻燃剂-3-溴-2,2-二甲基丙基-2-溴乙基-2-氯乙基磷酸酯(CBAP-912),探索了温度、时间、原料配比,催化剂用量等反应条件对产率的影响。用化学方法,FTIR、TG等方法对该合成产物的性能和结构进行了表征。并研究了该阻燃剂在不饱和聚酯树脂和聚氯乙烯中的阻燃性,结果表明其上有良好的阻燃性能。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号