首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This research article is based on the biodiesel synthesis from the marine green macroalga Ulva fasciata, collected from the coast of Karachi, Pakistan using new and the most potential waste catalysts from Pakistan Steel Industry.The oil was extracted with n-hexane then it was analyzed by GC, TLC and by the examination of fuel properties.The metal analysis of catalysts was carried out by chemical tests and flame atomic absorption spectroscopy(FAAS). The thermal treatment of catalysts at 1500–1700 °C during various processes in steel manufacturing industry converted the metals to metal oxides. The presence of CaO, MgO and ZnO in these catalysts made them highly reactive for biodiesel synthesis. The basicity of waste industrial catalysts was calculated to know their basic strength. The transesterification of U. fasciata oil was performed by fast stirring using 9:1 molar ratio of methanol/oil in the presence of seven different waste industrial catalysts for 6 h at 80–100 °C. The solid catalysts were easily separated from product for re-use. In addition, the rate of reaction in the presence of these catalysts was found to be quite feasible. The waste brown dust from the steel converter gave the highest yield(88%) of biodiesel. The production of biodiesel was confirmed by TLC examination and fuel properties in comparison with the ASTM standards.  相似文献   

2.
The migration behavior of heavy metal cations on cellulose layers using aqueous micellar, hydro-organic, and water-organic-surfactant mobile phases was investigated. Anionic, cationic, and nonionic surfactant systems were examined over a 0.001–5% concentration range. Brij-35, a nonionic surfactant capable of forming charged complexes with some metal ions, was identified as the best surfactant. The effect of the presence of organic additives, such as dimethylsulfoxide, dimethylformamide, methanol and acetone, on the mobility of metal ions was also studied. Acetone was found to be the most effective additive at 10% concentration with 3% Brij. Quantitative determination of UO2 2+ by spectrophotometry after preliminary thin-layer chromatographic (TLC) separation from Fe3+ and Hg2+ was also performed. A maximal recovery of 93% was obtained. This TLC method is rapid, with development times averaging 2 min.  相似文献   

3.
炼铁过程中会产出大量富集铅、锌、氯、钾等元素的烟尘,这些元素的存在对烟尘中铁的循环利用有不利影响,对其分离是实现高炉烟尘高效循环利用的首要条件。本工作对高炉烟尘进行了TG-DSC综合热分析,对铅、锌、氯、钾元素的水溶特性及其在真空还原过程中的挥发特性以及还原渣中铁的物相进行了研究。结果表明,烟尘在744及963℃有明显的吸热峰,说明在此温度下有较强烈的反应发生。根据烟尘中铅、锌、氯、钾的水溶特性,定性判断四种元素在烟尘中的主要存在形式为ZnCl2, KCl, ZnO, ZnFe2O4, PbO。真空还原可有效提取高炉烟尘中的铅、锌、钾、氯等元素,在炉内压力10 Pa、1100℃保温30 min条件下,烟尘中的铅、锌、钾、氯的挥发率分别为99.90%, 99.76%, 98.31%, 99.70%;烟尘中氯的存在形式主要为ZnCl2和KCl,氯在400~600℃时主要以ZnCl2形式挥发,600℃以上以KCl形式挥发;烟尘中锌除了以ZnCl2挥发以外,在高温阶段为ZnO和ZnO?Fe2O3被还原为金属锌而挥发;钾的挥发以KCl为主,铅的挥发是PbO被烟尘中的碳还原为金属铅蒸气而挥发。高炉烟尘中铁主要为Fe2O3,通过真空还原在895℃保温30 min,Fe2O3被还原为Fe3O4, FeO和Fe,在1075℃保温30 min时Fe2O3基本转变为结晶度较好的Fe。  相似文献   

4.
贱金属氧化物不溶性阳极的研究进展   总被引:1,自引:0,他引:1  
介绍了 PbOZ.SnO2.MnO2.CO3O4等贱金属氧化物不溶性阳极的研究和应用状况以及存在的问题,认为有效改善贱金属氧化物阳极的使用性能特别是表面催化性能以及如何搭配各种贱金属氧化物将是其替代贵重金属氧化物阳极的关键.  相似文献   

5.
Das R  Pachfule P  Banerjee R  Poddar P 《Nanoscale》2012,4(2):591-599
Herein, for the first time, we report a generalized strategy for the successful synthesis of highly crystalline metal and metal oxide nanoparticles embedded in a carbon matrix by the controlled thermolysis of metal organic frameworks (MOFs). The rationalized synthesis strategy of a broad range of metal and metal oxides nanoparticles, such as Cu/CuO, Co/Co(3)O(4), ZnO, Mn(2)O(3), MgO and CdS/CdO, by thermolysis of MOFs demonstrates for the first time that metal ions with a reduction potential of -0.27 volts or higher present in MOFs always form pure metal nanoparticles during thermolysis in N(2), whereas metal ions with a reduction potential lower than -0.27 volts form metal oxide nanoparticles during thermolysis in N(2). Another point of interest is the fact that we have found a unique relationship between the nanoparticle size and the distance between the secondary building units inside the MOF precursors. Interestingly, the crystallinity of the carbon matrix was also found to be greatly influenced by the environment (N(2) and air) during thermolysis. Moreover, these nanoparticles dispersed in a carbon matrix showed promising H(2) and CO(2) adsorption properties depending on the environment used for the thermolysis of MOFs.  相似文献   

6.
This work studies the application of KNO3/CaO catalyst in the transesterification reaction of triglycerides with methanol. The objective of the work was characterizing the methyl esters for its use as biodiesel in compression ignition motors. The variables affecting the methyl ester yield during the transesterification reaction, such as, amount of KNO3 impregnated in CaO, the total catalyst content, reaction temperature, agitation rate, and the methanol/oil molar ratio, were investigated to optimize the reaction conditions.The evolution of the process was followed by gas chromatography, determining the concentration of the methyl esters at different reaction times. The biodiesel was characterized by its density, viscosity, cetane index, saponification value, iodine value, acidity index, CFPP (cold filter plugging point), flash point and combustion point, according to ISO norms. The results showed that calcium oxide, impregnated with KNO3, have a strong basicity and high catalytic activity as a heterogeneous solid base catalyst.The biodiesel with the best properties was obtained using an amount of KNO3 of 10% impregnated in CaO, a methanol/oil molar ratio of 6:1, a reaction temperature of 65 °C, a reaction time of 3.0 h, and a catalyst total content of 1.0%. In these conditions, the oil conversion was 98% and the final product obtained had very similar characteristics to a no. 2 diesel, and therefore, these methyl esters might be used as an alternative to fossil fuels.  相似文献   

7.
燃煤流化床床料异相降解氮氧化物实验研究   总被引:2,自引:1,他引:1  
研究了几种典型床料对氮氧化物的直接降解作用,Fe可以高效地催化还原氮氧化物,而铁的氧化物只有在还原性气氛下才对氮氧化物表现出强烈的催化还原作用。在燃煤流化床中由于Fe的再生特点使之能够成为降低氮氧化物排放的有效途径。CaO对氮氧化物也具有较强的催化还原作用,而SiO2则表现出对氮氧化物弱的降解作用。  相似文献   

8.
疏水改性氧化钙催化制备生物柴油的研究   总被引:1,自引:0,他引:1  
以溴化苄作为改性剂,采用化学键合方法对市售氧化钙进行表面改性,考察改性氧化钙固体碱催化菜籽油-甲醇酯交换反应制备生物柴油的性能,并在此基础上对该催化体系的耐水性进行考察。通过对反应体系中醇/油摩尔比、催化剂用量和反应时间进行优化,最终得出在醇/油摩尔比为15∶1,催化剂用量为5%以及表面改性剂溴化苄用量为0.2%时,表面改性氧化钙上生物柴油产率在反应3h即可达到99.8%,而未改性氧化钙为催化剂时在相同反应条件下生物柴油产率仅为35.3%。  相似文献   

9.
In this study, transesterification of soybean oil to biodiesel using CaO as a solid base catalyst was studied. The reaction mechanism was proposed and the separate effects of the molar ratio of methanol to oil, reaction temperature, mass ratio of catalyst to oil and water content were investigated. The experimental results showed that a 12:1 molar ratio of methanol to oil, addition of 8% CaO catalyst, 65 °C reaction temperature and 2.03% water content in methanol gave the best results, and the biodiesel yield exceeded 95% at 3 h. The catalyst lifetime was longer than that of calcined K2CO3/γ-Al2O3 and KF/γ-Al2O3 catalysts. CaO maintained sustained activity even after being repeatedly used for 20 cycles and the biodiesel yield at 1.5 h was not affected much in the repeated experiments.  相似文献   

10.
Use of biodiesel and its production are expected to grow steadily in the future. With the increase in production of biodiesel, there would be a glut of glycerin in the world market. Glycerin is a potential feedstock for hydrogen production because one mol of glycerin can produce up to four mols of hydrogen. However, less attention has been given for the production of hydrogen from glycerin. The objective of this study is to develop, test and characterize promising catalysts for hydrogen generation from steam reforming of glycerin. Fourteen catalysts were prepared on ceramic foam monoliths (92% Al2O3, and 8% SiO2) by the incipient wetness technique. This paper discusses the effect of these catalysts on hydrogen selectivity and glycerin conversion in temperatures ranging from 600 to 900 °C. The effect of glycerin to water ratio, metal loading, and the feed flow rate (space velocity) was analyzed for the two best performing catalysts. Under the reaction conditions investigated in this study, Ni/Al2O3 and Rh/CeO2/Al2O3 were found as the best performing catalysts in terms of hydrogen selectivity and glycerin conversion. It was found that with the increase in water to glycerin molar ratio, hydrogen selectivity and glycerin conversion increased. About 80% of hydrogen selectivity was obtained with Ni/Al2O3, whereas the selectivity was 71% with Rh/CeO2/Al2O3 at 9:1 water to glycerin molar ratio, 900 °C temperature, and 0.15 ml/min feed flow rate (15300 GHSV). Although increase in metal loading increased glycerin conversion for both catalysts, hydrogen selectivity remained relatively unaffected. At 3.5 wt% of metal loading, the glycerin conversion was about 94% in both the catalysts.  相似文献   

11.
基于离子分子共存理论(IMCT)建立了Na2O-TiO2-SiO2-CaO-Al2O3-V2O5-MnO-MgO-FeO九元渣系的结构单元作用浓度模型和渣铁间硫分配比热力学模型,并对模型进行实验验证。通过模型计算出1200℃下渣系主要结构单元组成和渣中Na2O,CaO,MnO,MgO和FeO的活度,发现Na2O的加入可促进渣中低熔点物质的生成,降低渣系熔化性温度,改善脱硫反应的动力学条件;同时随着Na2O加入量的增加,渣中Na2O和CaO的活度增加,进而降低渣中S2?离子活度,强化渣铁间脱硫反应。实验结果表明,增加碱矿比提高了渣铁间硫分配比,有利于铁水深度脱硫,铁水中硫含量可降至0.0005wt%以下,硫分配比的理论计算值与实验结果吻合极好。渣中各碱性氧化物的硫分配比随碱矿比RN/C增加逐渐增大,各碱性氧...  相似文献   

12.
杨耀钧  刁瑞  王储  朱锡锋 《化工学报》2021,72(11):5820-5830
通过TG-FTIR、GC/MS和XRD等分析手段,研究了Fe2O3、Al2O3、CaO和TiO2四种金属氧化物催化下重质生物油的热解特性及产物差异。结果表明:应用上述四种催化剂的再裂解实验均促进了重质生物油的脱氧,其中CaO催化下脱氧效果最好,Al2O3能够有效降低反应温度,Fe2O3有效促进了重质生物油成炭前的解聚、固相产物质量降幅达21.23%,TiO2对CO2的生成有最明显的抑制效果、同时可以降低反应结束温度;在低温下,除CaO外的三种催化剂均对有效产物的生成有促进作用,但对不同种类的物质各有侧重,而CaO则会使反应所需温度升高且对愈创木酚的富集有很强的选择性;在中温下,CaO和TiO2表现出较好的催化效果。上述催化热解过程有效促进了酚类的富集,效果最好的是Al2O3,酚类相对含量增幅达31.10%。除Fe2O3外的三种金属氧化物均降低了生物炭的有序度,添加CaO制备的生物炭具有最无序的炭结构和最高的固相产率。  相似文献   

13.
王泽  史婉君  宋文立  李松庚 《化工学报》2017,68(10):3884-3891
通过固定床反应器,对4种金属氧化物(Al2O3、MgO、CaO、Fe2O3)对油页岩热解所得油、气产率及成分的影响进行了研究。结果显示,碱性CaO对油、水、气、焦产率分布影响较为突出,可提高页岩油与半焦产率,并降低热解气产率;而酸性较强的Al2O3可同时提高页岩油、热解气和热解水的产率,有利于促进挥发分的析出;比较而言,MgO和Fe2O3的作用相对较弱。4种金属氧化物均可提高热解气中H2、CH4和C2的产率;CaO作用下CO2含量降低,而其他金属氧化物对CO2的产生有不同程度的促进作用;Fe2O3可促进H2产生;Al2O3作用下CH4含量有所增加。4种金属氧化物均可促进页岩油中芳香烃的产生,并且CaO和MgO两种碱土金属氧化物作用下,短链(C6~C12)烷烃和烯烃含量均增加,而掺混Al2O3时页岩油中仅短链(C6~C12)烷烃含量增加。对此机理进行推测认为,碱性CaO和MgO首先与以脂肪酸形式存在的有机质进行酸碱反应,得到脱羧活性更高的羧酸盐,后者脱羧所得中间产物具有生成烷烃或烯烃两条可能路径,同时得到碳酸盐;而在具有Lewis酸特征的Al2O3作用下,脱羧产物为CO2,并同时得到饱和烃产物。  相似文献   

14.
用菜籽油为原料,以CaO为非均相催化剂,通过酯交换反应制备生物柴油。对比不同工艺下制备的4种CaO系列固体催化剂对制备的生物柴油黏度、酸值及得率的影响,发现催化效率高低顺序为:煅烧CaO>CaO/MgO(Ⅰ)>CaO/MgO(Ⅱ)>原料CaO。经700℃煅烧所制得的锻烧CaO固体催化剂使用效果最佳,在反应4h后得到黏度为4.37 mm2/s、酸值为0.79 mg/g的生物柴油,达到国家标准,得率为94.30%。  相似文献   

15.
以氧化铁、钛粉、氧化钙、二氧化钛为原料,利用溶胶-凝胶反应制备了人造钙钛矿岩石。以人造岩石为基底,利用固相反应固化模拟放射性核素Sr。借助X射线衍射(XRD)、扫描电子显微镜(SEM)等方法分析固化体形貌与结构。结果分析表明:当Fe2O3∶Ti∶CaO∶TiO2=2∶3∶4∶1(物质的量之比),掺入SrO含量为10%时,可以获得较好的钙钛矿物相。  相似文献   

16.
气化技术可有效缓解因可燃生活垃圾产量不断增加而衍生的环境问题,但仍需要对气化产生的H2S和SO2进行脱除以降低硫污染物排放风险。可燃生活垃圾组成的复杂性决定了需要开发适宜的双效固硫剂以对H2S和SO2一步脱除。原位固硫指将气化原料与固硫剂预先混合,气化与硫脱除同时进行且硫污染物被固定于灰渣中。本文使用聚苯乙烯颗粒、木屑等典型组分配制可燃生活垃圾作为气化原料,以CO2为气化剂,采用球磨法制备了一系列Ca-Fe复合金属氧化物作为固硫剂并对其原位固硫性能进行了研究。结果表明,在600℃气化温度下,Ca-Fe复合金属氧化物中的CaO/Fe2O3比例对固硫率产生影响,且两者质量比为1∶1时固硫性能最佳,固硫率可达82.65%。作为对比,CaO和Fe2O3单一组分固硫率仅分别为65.57%和74.12%。BET、SEM等分析表明CaO、Fe2O3球磨形成复合金属氧化物时产生相互作用并影响粒径分布、孔径、比表面积等物化性质,且能够改善固硫剂的烧结现象,质量比为1∶1时综合作用效果最优。  相似文献   

17.
The production cycle of the heterogeneous catalyzed-transesterification of methyl ester and alkanolamine for the production of esterquats precursor can be considered as a cleaner and sustainable process. This process is an important alternative route as opposed to the conventional homogeneous catalysis as it can eliminates the formation of wastewater, consumes less toxic chemical and reduce the production cost through catalyst reuse. Calcium oxide (CaO)-based catalysts which include pure CaO and modified CaO by other metal oxides were employed in this study for the production of alkanolamine ester, a precursor of esterquats. The basicity and textural properties of these catalysts were characterized using TPD-CO2 and N2 physisorption, respectively. Transesterification activity of CaO-based catalysts successfully showed a high di-ester yield of more than 85% at 160°C, 80 mbar, 4 wt% of catalyst dosage, 6 h reaction time, methyl palmitate to N-methyldiethanolamine mole ratio of 2:1 and agitation speed of 150 rpm. ZnO/CaO catalyst rendered the best durability characteristic as it exhibited constant activities for three subsequent runs with 85% di-ester yield. ZnO/CaO showed high catalytic activity similar to pure CaO catalyst with low leaching of Ca active phase and better reusability than that of pure CaO catalyst, that shows loss of its activity after the first cycle.  相似文献   

18.
The influence of the dehydration by metal oxides on the synthesis of dimethyl carbonate(DMC) via oxidative carbonylation of methanol was studied. A Cu/Y-zeolite catalyst was prepared by the ion exchange method from CuCl_2·2 H_2O and the commercial NH_4-form of the Y type zeolite. The catalyst was characterized by X-ray fluorescence(XRF), N_2 adsorption(BET method), X-ray diffraction(XRD), and temperature-programmed desorption of ammonia(NH_3-TPD) to evaluate its Cu and Cl content, surface area, structure, and acidity. Reaction tests were carried out using an autoclave(batch reactor) for 18 h at 403 K and 5.5 MPa(2CH_3OH + 1/2O_2+CO?(CH_3O)_2CO + H_2O). The influence of various dehydrating agents(ZnO, MgO, and CaO) was examined with the aim of increasing the methanol conversion(X_(MeOH), MeOH conversion). The MeOH conversion increased upon addition of metal oxides in the order CaO MgO ZnO, with the DMC selectivity(SDMC) following the order MgO CaO ZnO. The catalysts and dehydrating agents were characterized before and after the oxidative carbonylation of methanol by thermogravimetric and differential thermogravimetric(TG/DTG), and XRD to confirm that the dehydration reaction occurred via the metal oxide(MO + H_2O → M(OH)_2). The MeOH conversion increased from 8.7% to 14.6% and DMC selectivity increased from 39.0% to 53.1%, when using the dehydrating agent CaO.  相似文献   

19.
Four kinds of polytetrafluoroethylene(PTFE)-based composites, such as pure PTFE, PTFE+30%(v)PbO, PTFE+30%(v)Pb3O4, and PTFE+30%(v)Cu2O composite, were prepared. The friction and wear properties of these metal oxides filled PTFE composites sliding against GCr15 bearing steel in both dry and lubricated conditions were studied by using an MHK-500 ring-block wear tester. Then the worn surfaces of these PTFE composites and the transfer films of these PTFE composites formed on the surface of GCr15 bearing steel were examined by using a Scanning Electron Microscope (SEM) and an Optical Microscope, respectively. Experimental results show that the friction and wear properties of these metal oxide-filled PTFE composites can be greatly improved by liquid paraffin lubrication, and the friction coefficients can be decreased by one order of magnitude. Meanwhile, the interactions between liquid paraffin and metal oxide-filled PTFE composites, especially the absorption of liquid paraffin into the surface layers of these PTFE composites, reduce the mechanical strength and the load-carrying capacity of these metal oxide-filled PTFE composites. This leads to the deterioration of the friction and wear properties of these PTFE composites. Investigations of the frictional surfaces show that Pb3O4, Cu2O, and PbO enhance the adhesion of the transfer films to the surface of GCr15-bearing steel, and thus promote the transfer of the PTFE composites onto the surface of GCr15-bearing steel. Therefore, they greatly reduce the wear of the PTFE composites. However, the transfer of these PTFE composites onto the counterfaces can be greatly reduced by lubrication with liquid paraffin. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 66: 85–93, 1997  相似文献   

20.
采用湿法浸渍法研究了五种KOH负载的催化剂催化合成生物柴油反应,并采用XRD﹑SEM﹑CO2-TPD等方法对其进行结构和性能表征。结果表明,15%(质量分数,下同)KOH负载的CaO催化酯化活性最高,在醇油摩尔比16∶1,反应温度65℃,催化剂加入量为4%条件下,反应1h,脂肪酸甲酯收率达到97.1%。KOH负载的CaO催化剂中出现了K2O的晶相,15%CaO/KOH催化剂有更多的活性位点,有利于生物柴油酯交换反应。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号