首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polycrystalline Cd1−xZnxTe solar cells with efficiency of 8.3% were grown by cathodic electrodeposition on glass/ITO/CdS substrates using non-aqueous ethylene glycol bath. The deposit is characterised versus the process conditions by XRD and found to possess a preferred (1 1 1) orientation on Sb doping in the electroplating bath. The surface morphology of the deposit is studied using atomic force microscope. The average RMS roughness for the ternary film was higher than that for the binary CdTe. Optical properties of the films were carried out to study the band gap and calculation of molar concentration ‘x’. The effects of Sb doping in CdS/Cd1−xZnxTe heterojunctions have been studied. The short circuit current density (c) was found to improve and series resistance (Rs) reduced drastically upon Sb doping. This improvement in Jsc is attributed to an increase in quantum efficiency. The evaluation of solar cell parameters was also carried out using the current–voltage characteristics in dark and illumination. The best results were obtained when 2×10−3 M ZnCl2 along with antimony were present in the deposition bath. Under AM 1.5 conditions the open circuit voltage, short circuit current density, and fill factor of our best cell were Voc=600 mV, Jsc=26.66 mA/cm2, FF=0.42 and efficiency, η=8.3%. The carrier concentration and built-in potential of Cd1−xZnxTe calculated from Mott–Schottky plot was 2.72×1017 cm−3 and 1.02 eV.  相似文献   

2.
The electrodeposition of Zn1−xCdxSe polycrystalline semiconducting thin films from aqueous acidic bath without any additives onto tin oxide-coated conducting glass and titanium substrates are described. The influence of deposition parameters on the film formation and deposition mechanism based on cyclic voltammetry is discussed. X-ray diffraction studies showed the polycrystalline wurtzite nature for all the films deposited under the proposed conditions. The optical studies revealed the band gap values in the range between 2.82 and 1.72 eV as the film composition changes from ZnSe to CdSe. It has been observed that the concentration of cadmium salt plays an essential role on the alloy formation. The surface morphological studies and composition analysis were carried out and the results are discussed.  相似文献   

3.
We have developed an electrodeposition bath based on a buffer solution so that the stability of the electrodeposition process is enhanced and no metal oxides or hydroxides precipitate out of solution. The buffer-solution-based bath also deposits more gallium in the precursor films. As-deposited precursors are stoichiometric or slightly Cu-rich CuIn1−xGaxSe2. Only a minimal amount of indium was added to the electrodeposited precursor films by physical vapor deposition to obtain a 9.4%-efficient device.  相似文献   

4.
The potential of CdTe/CdS/Cd1−xZnxS structure as an alternative to CdTe/CdS structure in photovoltaic application has been demonstrated. The unoptimized solar cell structure grown on transparent conducting oxide coated soda lime glass of 3 mm thickness with no antireflection coating yielded a 10% efficiency. This efficiency is the highest ever recorded in any Cd1−xZnxS film containing CdTe solar cells.  相似文献   

5.
Gold surface barriers on ZnxCd1−xSe alloys have been investigated for composition with x=(0.5, 0.55). The electrical characteristics were studied as a function of air annealing. The common feature of all the Schottky devices was the reduction of reverse bias leakage current after heating in air. Typical measurements of capacitance as a function of bias voltage can provide information on the charge density and diffusion potential. The barrier height was found to increase after air annealing at 200°C for 2 min. The spectral response of the photocurrent and photocapacitance associated with these device layers enable a donor level at 0.13 eV and acceptor levels at 1.08, 1.3 and 1.45 eV below the bottom of the conduction band to be identified. The results are discussed in terms of the effects of oxygen absorption.  相似文献   

6.
K.R. Murali   《Solar Energy》2008,82(3):220-225
CdxZn1−xTe (0  x  0.5) thin films were deposited for the first time by the brush plating technique using cadmium sulphate, zinc sulphate and tellurium dioxide precursors. The deposition current density was maintained at 100 mA cm−2. X-ray diffraction studies indicated the formation of cubic phase with (1 1 1), (2 2 0), (3 1 1) orientations. From optical absorption measurements the band gaps of the films are found to be direct. AFM studies indicate a surface roughness around 54 Å. Density of the films of different composition has been estimated. Laser Raman studies indicated CdTe like LO and TO phonons.  相似文献   

7.
ZnxCd1−xO thin films were prepared on glass substrates by spray pyrolysis technique. The precursor solutions were obtained by varying the concentration of Zn(NO3)2·6H2O and Cd(NO3)2·4H2O in bi-distilled water. The structural properties have been studied using X-ray diffraction spectra. All the structures include the basic compounds, i.e. ZnO and CdO. The orientation and the crystalline phases of the deposited films were specified. With the addition of Zn to the precursor solution, we can observe the preferential orientation of the CdO in the [2 0 0] direction. The electrical measurements were performed using method of four contacts. Thin films transmittances, in the 1.5–4.3 eV range, for different compositions have been measured and the optical gaps have been determined. The variations are explained considering the gaps of the two pure films. The influence of increased Cd concentration in the films on the structural, electrical and optical properties is investigated in this study.  相似文献   

8.
In this paper we report the 15.4%- and 13.4%-efficient CuIn1−xGaxSe2 (CIGS)-based devices from electrodeposited (ED) and electroless deposited (EL) precursors. The efficiency of the device prepared from electroless precursor film has been improved from 12.4% to 13.4%. The dependence of quantum efficiencies on reverse-bias voltage has been measured for a 15.4%-efficient ED device, 18.8%-efficient physical-vapor-deposited device, and 14.2%-efficient Cd-free device. The purpose of this work is to explore and improve the current collection mechanism.  相似文献   

9.
Bulk and thin films of CuIn0.75Ga0.25Te2 have been grown using respectively the sealed quartz ampoule and the flash evaporation techniques. X-ray diffraction results showed that the semiconductor has the chalcopyrite structure. The gaps of the materials were determined from optical measurements and found to be 0.99 and 1.14 eV, respectively for bulk and annealed films. Photoluminescence data showed a broad emission localised at 1.05 eV.  相似文献   

10.
CuInxGa1−xSe2 (CIGS) polycrystalline thin films with various Ga to In ratios were grown using a new two-step electrodeposition process. This process involves the electrodeposition of a Cu–Ga precursor film onto a molybdenum substrate, followed by the electrodeposition of a Cu–In–Se thin film. The resulting CuGa/CuInSe bilayer is then annealed at 600°C for 60 min in flowing Argon to form a CIGS thin film. The individual precursor films and subsequent CIGS films were characterized by X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy and Auger electron spectroscopy. The as-deposited precursor films were found to be crystalline with a crystal structure matching that of CuGa2. The annealed bi-layers were found to have the same basic chalcopyrite structure of CuInSe2, but with peak shifts due to the Ga incorporation. Energy dispersive spectroscopy results show that the observed shifts correlate to the composition of the films.  相似文献   

11.
CdSe0.3Te0.7 alloy was prepared from the individual components and its composition and structural analysis were done. Films were prepared by hot wall deposition technique using 0.15 m length tube under a vacuum of 5×10−5 Torr on well cleaned glass substrates. The composition, structural, morphological, and optical properties of hot wall deposited films were investigated. The XRD analysis revealed that the films are like amorphous in nature for lower thicknesses but with increasing thickness a more preferred orientation along (1 0 1) direction was observed. The crystallite size (D), dislocation density (δ) and strain () were evaluated. From the EDX composition analysis, the individual concentrations of Se and Te in the films were estimated. An analysis of optical measurements shows that all the films have fairly good transparency above 850 nm. The optical band gap was found to be around 1.55 eV and decreases with increasing thickness. Also comparison of band gap with corresponding values for CdSe and CdTe are made.  相似文献   

12.
Sulfides of zinc and cadmium have been used effectively in various optolectronic devices and recently as photocatalysts in the production of molecular hydrogen in photoelectrochemical processes. We have prepared sintered CdZnS films by the screen printing method without the presence of the typical flux material. The formation of crystalline ternary compounds is inferred from the X-ray diffraction pattern of these films. Their structural and optical properties are studied by reflection spectra in a wavelength range of 300–600 nm. The films have a direct band gap, which varies from 3.7 eV for zinc sulfide to 2.45 eV for cadmium sulfide. Films with a narrow range of composition were found to be stable in Na2SO3 solution under cathodic or anodic polarization in dark and illuminated conditions. This potential interval allowed to determine the flat band potentials from capacity measurements in the dark, which indicated strong contribution of double layer capacitance, surfaces states, and non-uniform doping concentration. Electrochemical impedance measurements where further performed, giving detailed information about the relevance of these factors and the optimum composition of coupled semiconductor films for photocatalytic purposes.  相似文献   

13.
A series of cobalt-free and low cost BaCexFe1−xO3−δ (x = 0.15, 0.50, 0.85) materials are successful synthesized and used as the cathode materials for proton-conducting solid oxide fuel cells (SOFCs). The single cell, consisting of a BaZr0.1Ce0.7Y0.2O3−δ (BZCY7)-NiO anode substrate, a BZCY7 anode functional layer, a BZCY7 electrolyte membrane and a BaCexFe1−xO3−δ cathode layer, is assembled and tested from 600 to 700 °C with humidified hydrogen (3% H2O) as the fuel and the static air as the oxidant. Within all the cathode materials above, the cathode BaCe0.5Fe0.5O3−δ shows the highest cell performance which could obtain an open-circuit potential of 0.99 V and a maximum power density of 395 mW cm−2 at 700 °C. The results indicate that the Fe-doped barium cerates can be promising cathodes for proton-conducting SOFCs.  相似文献   

14.
The use of perovskites with the general formula La1−xSrxMyFe1−yO3 (M = Ni, Co, Cr, Cu) as oxygen carriers for syngas generation from methane by Chemical Looping Reforming is investigated in the present work. The experimental study concerns the oxidation of a fuel, using the oxygen from a solid oxygen carrier, instead of oxygen from air. Subsequent oxidation of the reduced solid is performed either with gaseous oxygen or with water. In the latter case additional hydrogen is produced, which is very pure and therefore appropriate to be used in fuel cell applications. The performance of the candidate materials is ranked by taking into account the hydrogen and carbon monoxide yields during the fuel oxidation step as well as the amount of oxygen per mole solid (δ) that can be delivered reversibly to the fuel. The effect of the materials composition and of NiO addition is examined. The best performance was obtained with the La0.7Sr0.3Cr0.1Fe0.9O3 sample mixed with 5% NiO. The H2 yield was up to 90%.  相似文献   

15.
Well dispersed Ce1−xTbxO2−δ nano-powders were synthesized by using the carbonate coprecipitation method in an entire compositional range of 0x1, which allowed the preparation of highly dense pellets by sintering at 1673 K and the systematical study of the electrical conductivity in such a wide compositional range. It was found that the conductivity increased with increasing Tb concentration except that of x=0.80. Secondary phase were observed by using X-ray diffraction in the samples with x0.80, which might have negative impact on the conductivity of the samples.  相似文献   

16.
We have fabricated 13.7%- and 7.3%-efficient CuIn1−xGaxSe2 (CIGS)-based devices from electrodeposited and chemical bath deposited precursors. As-deposited precursors are Cu-rich films and polycrystalline (grain size is very small) in nature. Only preliminary data is presented on chemical bath deposited precursors. Additional In, Ga, and Se were added to the precursor films by physical evaporation to adjust the final composition to CuIn1−xGaxSe2. Addition of In and Ga and also selenization at high temperature are very crucial to obtain high efficiency devices. Three devices with Ga/(In+Ga) ratios of 0.16, 0.26, and 0.39 were fabricated from electrodeposited precursors. The device fabricated from the chemical bath deposited precursor had a Ga/(In+Ga) ratio of 0.19. The films/devices have been characterized by inductive-coupled plasma spectrometry, Auger electron spectroscopy, X-ray diffraction, electron-probe microanalysis, current-voltage characteristics, capacitance–voltage, and spectral response. The compositional uniformity of the electrodeposited precursor films both in the vertical and horizontal directions were studied. The electrodeposited device parameters are compared with those of a 17.7% physical vapor deposited device.  相似文献   

17.
The trap properties of ZnO/CdS/CuInSe2 and ZnO/CdS/CuGa0.3Ino0.7Se2 PV cells were investigated. It is believed that an argon (Ar) annealing prior to the junction formation could reduce the density of deep traps close to the mid-gap of single-crystal CuInSe2. While no minority carrier traps were observed in ZnO/CdS/CuInSe2 PV cells, results on ZnO/CdS/CuGa0.3Ino0.7Sen2 PV cells suggested the co-existence of both the majority and minority carrier traps. Furthermore, there is evidence showing deep traps close to the mid-gap of Ar annealed single-crystal CuGa0.3In0.7Se2.  相似文献   

18.
CuxNi1−xO electrochromic thin films were prepared by sol–gel dip coating and characterized by XRD, UV–vis absorption and electrochromic test. XRD results show that the structure of the Cux Ni1−xO thin films is still in cubic NiO structure. UV–vis absorption spectra show that the absorption edges of the CuxNi1−xO films can be tuned from 335 nm (x = 0) to 550 nm (x = 0.3), and the transmittance of the colored films decrease as the content of Cu increases. CuxNi1−xO films show good electrochromic behavior, both the coloring and bleaching time for a Cu0.2Ni0.8O film were less than 1 s, with a variation of transmittance up to 75% at the wavelength of 632.8 nm.  相似文献   

19.
Polycrystalline thin films of CuIn1−xGaxTe2 have been deposited by flash evaporation on Corning glass 7059 substrates at Ts=200°C. Hall and resistivity measurements have been carried out down to 77 K. These films are p-type and the variation of the resistivity may be linked to defects, disorder of the material or grain boundaries. The PL spectra of these films after annealing in argon atmosphere at Ta=450°C have showed a broad band emission between 0.98 and 1.12 eV in which the main peak appears at 1.05 eV (at 4.2 K).  相似文献   

20.
CuIn1−xGaxSe2 polycrystalline thin films were prepared by a two-step method. The metal precursors were deposited either sequentially or simultaneously using Cu–Ga (23 at%) alloy and In targets by DC magnetron sputtering. The Cu–In–Ga alloy precursor was deposited on glass or on Mo/glass substrates at either room temperature or 150°C. These metallic precursors were then selenized with Se pellets in a vacuum furnace. The CuIn1−xGaxSe2 films had a smooth surface morphology and a single chalcopyrite phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号