共查询到20条相似文献,搜索用时 7 毫秒
1.
针对7085铝合金航空构件的热加工工艺问题,对7085铝合金在300~450℃和0.0001~1 s-1条件下进行等温压缩实验,建立了7085铝合金热加工图并且分析了7085铝合金热成形性.结果表明:温度340~450℃、应变速率0.0001~1s-1为加工安全区;失稳区域为温度300~340℃、应变速率0.01~1 s-1,在此区域加工时,形成绝热剪切带且带内组织为剧烈拉长晶粒;潜在危险加工区域为温度300~340℃、应变速率0.0001~0.01 s-1;建议在温度340~410℃、应变速率0.0004~1 s-1选择工艺参数. 相似文献
2.
采用拉伸试验与疲劳裂纹扩展试验,以及扫描电子显微分析与透射电子显微分析,研究了热机械处理对2E12铝合金的拉伸力学性能、疲劳性能以及微观组织结构的影响。采用本热机械处理可以使2E12合金同时获得优异的强度与塑性配合,其屈服强度较T3提高了28%,抗拉强度也提高了17%,同时其延伸率仍维持T3水平(16%以上)。热机械处理样品裂纹扩展速率低于T3及T6峰时效状态。热机械处理状态的合金中包含大量相互缠结的位错,并形成了位错胞状组织。新型热机械处理大幅提升合金综合性能的机制是多种复合组织结构的协同作用,包括位错亚结构、Cu/Mg溶质原子团簇及空位复合体、GPB区等 相似文献
3.
利用热模拟压缩试验,研究了2A02铝合金不同变形条件下的动态软化机制及变形后不同固溶制度下的晶粒演变与微结构演化。结果表明,变形量较低时(变形量为10%、20%与40%),2A02铝合金以加工硬化为主,变形量为60%时,加工硬化与动态软化机制交互作用,其中软化机制体现为几何动态再结晶;进一步的光学显微镜与透射电子显微镜观察表明,随着变形量的增加,锯齿状晶界越发明显,在外加应力和热激活的作用下,亚晶通过转动、合并形成大角度晶粒,诱发动态再结晶过程。高温压缩试验后的固溶过程中,固溶时间越长再结晶的等轴晶粒内部位错密度越低,等轴晶粒尺寸随固溶时间的增长而增大。 相似文献
4.
利用Gleeble-3500热模拟压缩试验机,在变形温度820~980℃和应变速率0.01~10 s~(-1)的变形条件下,对TA19钛合金进行热模拟压缩试验,并根据动态材料模型(DMM)建立了其热加工图。同时,结合TA19钛合金微观组织分析,揭示了热变形工艺参数影响热加工图的内在原因。结果表明:变形工艺参数与能量耗散率和非稳态区密切相关。应变速率为0.01~1 s~(-1)时,能量耗散率较大,且随着变形温度的升高,能量耗散率先增大后减小,在940℃附近获得最大值。同时,变形失稳区包括2个典型区域,其中I区为(820~900)℃/(0.01~1) s~(-1),II区为(960~980)℃/(1~10) s~(-1)。变形温度为940℃时,较多的等轴α相和较高的再结晶驱动温度使得再结晶程度加强,因此能量耗散率获得最大值。绝热剪切带、片层α相与等轴α相之间的变形不协调以及β晶粒的剧烈长大是TA19钛合金高温变形失稳的主要原因。 相似文献
5.
通过DSC热分析、显微硬度测试、透射电镜分析等研究了预变形对2E12铝合金时效析出过程的影响。结果表明:2E12铝合金表现为双阶段时效硬化特征,预变形降低了合金时效第1阶段硬化效果,提高了合金峰时效硬度,缩短了峰时效时间;随预变形量的增加,合金峰时效硬度增大,峰时效时间提前。增加预变形量使合金中析出的板条状S相更为细小、弥散。预变形引入位错对沉淀析出有利,位错环纯刃型位错为S相析出提供有利位置,促进球状S相形核。预变形产生位错结构有利于I型S相析出,并延缓II型S相析出 相似文献
6.
目的 探究激光除漆对铝合金飞机蒙皮基体近表层(15 μm)微观组织的影响规律,阐明近表层微观组织变化与显微硬度的内在联系。方法 采用纳秒脉冲红外激光去除2024-T3铝合金飞机蒙皮表面漆层,通过调节激光能量密度,分别除漆至基体阳极氧化层、铝合金、铝合金表面熔融。利用激光扫描共聚焦显微镜(LSCM)表征漆层的剥离程度及基体的表面形貌。通过超景深三维显微镜(OM)、扫描电子显微镜(SEM)、Image-Pro Plus软件表征Keller试剂腐蚀后铝合金基体近表层的微观组织。采用数显显微维氏硬度计测量基体剖面的显微硬度。结果 在激光能量密度为4.26 J/cm2时,相较于原始基体,阳极氧化层较完整,其基体的表面粗糙度接近于原始基体(未除漆),近表层的微观组织无明显改变,近表层的显微硬度增加了1.6%。当除漆至铝合金基体表面完整时(15.25 J/cm2),相对于原始基体,其表面粗糙度降低,近表层的微观组织无明显改变,近表层的显微硬度增加了4.8%。在激光能量密度为27.79 J/cm2时,铝合金表面熔融,其表面粗糙度相对于原始基体增大,近表层的晶粒显著细化,其显微硬度增加了17.3%。结论 采用合适的激光能量密度对铝合金飞机蒙皮进行激光除漆,不会显著改变其基体近表层的微观组织。在较高能量密度下,铝合金近表层会发生晶粒细化,导致显微硬度显著增加。 相似文献
7.
采用热力模拟平面压缩实验和电子背散射衍射(EBSD)组织分析测试方法,研究了新型Al-Zn-Mg-Cu高强铝合金热压缩变形以及退火微观组织和织构。结果表明,在变形温度为350℃,应变速率为0.1 s~(-1)的条件下,合金微观组织演变机理为动态回复和大应变几何动态再结晶,出现旋转立方织构{001}110和黄铜织构{111}110,分别沿着α-取向线和β-取向线分布;退火后旋转立方织构减少,黄铜织构增多,旋转立方织构沿着α-取向线向黄铜织构转变。在变形温度为420℃,应变速率为0.1 s~(-1)的条件下,合金变形组织较均匀,再结晶晶粒分布在变形剧烈的晶界或三角晶界处,出现的织构种类主要有旋转立方织构{110}110、黄铜型{011}211织构;退火过程中发生亚动态再结晶,旋转立方织构强度增强,黄铜型{011}211织构有向高斯织构方向移动的趋势。 相似文献
8.
为了挖掘亚稳b钛合金Ti-B19的热变形加工潜力,采用热模拟试验机,在温度范围750-1000 °C,温度间隔50 °C,应变速率为0.001-10 s-1的条件下对Ti-B19合金的热压缩行为进行研究。结果表明,一定温度下,Ti-B19合金的流变应力随应变速率的增大而增大;一定应变速率下,合金的流变应力则随温度的升高而降低。当应变ε为0.6时,合金的加工图可分为3个区域。700-800 °C,应变速率为0.001-0.1 s-1,合金最大的能量耗散效率值出现在750 °C和0.01 s-1处,其数值为42%,出现连续软化之前,此区域的流变曲线中只出现单个峰或振荡峰。第2个区域的温度范围在800-1000 °C,应变速率范围为0.001-0.1 s-1,能量耗散效率值在29%~36%之间变化。此区域的流变曲线到达稳态之前只出现单个峰或振荡峰,此时可观察到典型的再结晶组织。温度低于800 °C,应变速率大于0.1 s-1,或者温度高于800 °C,应变速率大于10 s-1时, 合金中会出现典型的流变不稳定的第3区,组织中可观察到绝热剪切带或β相流变不均匀区。 相似文献
9.
10.
《稀有金属材料与工程》2018,35(5):29-32
通过Thermecmaster-Z热模拟试验机,对TC27钛合金在变形温度900~1 150 ℃和应变速率0.01~10 s-1范围内进行等温恒应变速率热压缩实验,压缩变形量为50%。结果表明,流变应力随应变的增加迅速增大,达到峰值后随应变的增加而减小,最后趋于相对稳定。流变应力随着温度的增加而减小,随着应变速率的增加而增大。TC27钛合金加工图有2个耗散效率峰值区,一个是900 ℃/0.01 s-1,此区域变形时出现动态回复;另一个峰值区为1 050 ℃/0.01 s-1,此区域变形时出现再结晶。 相似文献
11.
Al90Ni2.5Ti2.5La2.5Mn2.5 alloy with multicomponent alloying elements was prepared by rapid solidification. The hardness and the compression strength
of the alloy reached 285 HV and 712 Mpa, respectively. The alloy exhibited good wear resistance, which was three times that
of the conventional A309 aluminum alloy. The high strength and wear resistance of the alloy were attributed to the second-phase
strengthening and the solid solution strengthening mechanisms. 相似文献
12.
研究了铸态Mg-8Y-6Gd-1Nd-0.17Zn镁合金在应变量为50%、温度350℃~450℃、应变速率0.0001s-1~0.1s-1的范围内热压缩过程中的本构行为、组织演变和热加工性能。通过选用双曲正弦本构方程来描述合金的流变行为以及变形参数间的关系。实验结果表明,温度和应变速率对Mg-8Y-6Gd-1Nd-0.17Zn镁合金的流变应力行为有重要影响,其流变应力随温度的降低和应变速率的增加而增大,并且在温度高于400℃压缩时,合金的真应力应变曲线具有典型的动态再结晶特性。在本实验条件下,该合金变形期间的活化能(Q)和应力指数(n)分别为359.258 KJ / mol 和5.24,实验值与计算值之间的平均误差(ARE)为3.37%。最后基于动态材料模型加工理论,结合热加工图和压缩过程中的组织演变,确定了该合金的最佳热加工参数为:加热温度400~450℃,应变速率为0.0001s-1~0.001s-1。 相似文献
13.
运用光学显微镜(OM)、扫描电镜(SEM)、透射电镜(TEM)和X射线衍射仪(XRD)对近海含SO_2环境中使用过的高压隔离开关2A12-T4铝合金部件的组织以及腐蚀特征进行分析。结果表明:2A12-T4铝合金晶粒沿变形方向拉长,并形成了一定数量的亚晶;主要的第二相是T相,并有大量的位错缠绕在T相周围。2A12-T4铝合金主要的腐蚀产物是Al(OH)_3和Al2(SO_4)_3·14H_2O,腐蚀主要受到湿润条件下Cl-和SO_2两种腐蚀性介质的联合作用,而拉长变形的晶粒以及第二相粒子则加速了腐蚀。 相似文献
14.
15.
实验研究了含 B和 Sr的 62 0 1铝合金显微组织 ,发现 62 0 1铝合金在同时含有 B和 Sr的情况下 ,铸态组织中有明显的缩松出现。而在同样的凝固条件下 ,仅含有 B或 Sr的合金都不会出现缩松。通过电阻率测试 ,发现缩松对合金的电阻率的影响是显著的。 相似文献
16.
17.
通过热压缩模拟试验研究了Al-xMg-2.8Zn合金在变形温度为300~490 ℃、应变速率为0.001~5 s-1条件下的热变形行为。修正了应变-应力曲线中由于变形热引起的流动软化现象后,利用Arrhenius本构方程和热加工图预测并分析了Al-xMg-8Zn合金的热变形行为。结果表明,随着Mg含量的增加,应变速率的升高,或者变形温度的降低,流变应力随之增大。结合热加工图和微观组织观察,确定了合金的最佳热加工参数范围。通过对比发现,随着Mg含量的增加,最佳热变形温度和应变速率范围均变大,变形失稳区域向高温和低应变速率区域扩展。 相似文献
18.
研究了铝及铝合金直接电镀新工艺(非接触体),讨论了影响铝及铝合金镀层的几大因素,并对基体与镀层的结合力、硬度进行了实验。 相似文献
19.
目的 采用电火花沉积技术修复铝合金铸造缺陷。方法 采用两种电极(ER5356电极和自制电极),在优化电火花沉积工艺条件下,修复铝合金表面气孔,系统研究电火花沉积工艺、电极材料、沉积气氛对修复层的影响。采用扫描电子显微镜(SEM)结合能谱仪(EDS)对修复层界面组织和成分进行表征;用显微硬度计测试修复层的硬度;用电化学工作站测试修复层的Tafel曲线,在水浴中测试修复层的降解速率,从热力学与动力学两方面对修复层的降解性能进行全面评价。结果 在氩气气氛中的最佳修复工艺参数为:频率5000 Hz,电容150 μF,沉积角度45°,此时的热输入为0.480 J。在氩气气氛中的修复层组织致密,且元素均匀分布,减小了成分偏析。由于消除了枝晶,修复层的硬度相对于基体的硬度略有提高。自制电极修复层的自腐蚀电位(–1.493 V)低于基体的自腐蚀电位(–1.421 V),ER5356电极修复层不溶于水,自制电极修复层降解速率稍快于基体。结论 使用电火花沉积技术,可对3.5英寸压裂球表面缺陷进行修复,经测试,硬度和降解性能达到工程指标。 相似文献
20.
对2024铝合金板进行不同参数下搅拌摩擦焊接, 分析了焊缝表面组织, 检查了在EXCO溶液中焊缝表面的腐蚀行为, 并讨论硬度分布与腐蚀发生的关系. 结果表明, 焊后轴肩作用区晶粒细化明显. 随转速的增加, 焊缝上表面热影响区范围加宽、轴肩作用区硬度上升、耐蚀性能提高. 在转速1500 r/min、行进速度1000 mm/min下所得焊缝金属塑性流动剧烈, 轴肩作用区硬度值已接近母材的硬度值, 在EXCO溶液中浸泡10 h后仅发生点蚀. 与母材相比, 接头硬度的软化区是腐蚀发生的区域, 但硬度值最低的位置与腐蚀最严重的区域没有严格的对应关系. 相似文献