首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 273 毫秒
1.
动态频谱接入策略是实现认知无线电网络高效利用频谱的关键。与传统认知无线电网络不同,认知mesh网络中不同QoS需求的多类型业务共同接入,为适应这一特点,提出服务区分的动态频谱接入策略。策略依据业务的QoS需求确立优先级,针对不同优先级业务采取不同的信道接入方案,实时业务依据最优传输延迟期望选择接入信道集合,在减小传输延迟的同时降低数据传输过程授权用户出现的概率,普通业务选择最优理想传输成功概率的信道,降低信道切换概率。理论与实验结果表明,与传统的认知网络频谱接入策略相比,提出的策略能提供不同业务的服务区分,满足实时业务的低延迟需求,降低数据传输的中断率,同时在授权信道空闲率与网络负载较大时吞吐量性能较优。  相似文献   

2.

Utilization of unlicensed spectrum under licensed assisted access ensuring fair co-existence with Wi-Fi networks is a good solution to address immense usage of mobile data. Radio communication operation of LTE in unlicensed frequency band is referred as LTE-unlicensed (LTE-U) or LTE-licensed assisted access. In this paper, we consider a HGNW in which coverage area of Wireless-Fidelity (Wi-Fi)’s Access Point is integrated within the LTE-U small base station’s cellular network coverage area. To overcome the disadvantages of existing LTE-U technics like carrier sense adaptive transmission and listen before talk, we proposed a new methodology i.e., sense before transmit in this paper by adopting a transmit power control mechanisms using reciprocity theorem based on the channel state information to assign the secondary carriers in the uplink as well as in the downlink directions in the unlicensed spectrum to carry the traffic. In our proposal, LTE-U users are allowed to use the unlicensed spectrum provided that the interference produced at Wi-Fi users due to LTE-U activities is remained below a certain threshold. We evaluated the performance of proposed network model in terms of outage probability and achievable throughputs.

  相似文献   

3.
设备对设备(D2D)通信作为一种短距离通信技术,能够极大地减轻蜂窝基站的负载压力和提高频谱利用率。然而将D2D直接部署在授权频段或者免授权频段必然导致与现有用户的严重干扰。当前联合部署在授权和免授权频段的D2D通信的资源分配通常被建模为混合整数非线性约束的组合优化问题,传统优化方法难以解决。针对这个挑战性问题,该文提出一种基于多智能体深度强化学习的D2D通信资源联合分配方法。在该算法中,将蜂窝网络中的每个D2D发射端作为智能体,智能体能够通过深度强化学习方法智能地选择接入免授权信道或者最优的授权信道并发射功率。通过选择使用免授权信道的D2D对(基于“先听后说”机制)向蜂窝基站的信息反馈,蜂窝基站能够在非协作的情况下获得WiFi网络吞吐量信息,使得算法能够在异构环境中执行并能够确保WiFi用户的QoS。与多智能体深度Q网络(MADQN)、多智能体Q学习(MAQL)和随机算法相比,所提算法在保证WiFi用户和蜂窝用户的QoS的情况下能够获得最大的吞吐量。  相似文献   

4.
In recent wireless network domains static spectrum access is a major concern. Generally, this access leads to spectrum scarcity problem by creating empty holes or white spaces. However, the scarcity is temporary and can be alleviated if spectrum access is performed dynamically and efficiently. One important step towards dynamic spectrum access is the development of cognitive radio (CR) technology, which senses nearby spectrum portions (or bands) and tries to use them either opportunistically or by negotiating with the neighboring users. Nonetheless, dynamic spectrum access raises several challenges which need to be addressed in detail. These challenges include efficient allocation of spectrum for users in order to maximize spectrum utilization and to avoid user level conflicts both under licensed and unlicensed bands. In this paper, considering the relative rarity of solutions for unlicensed spectrum access and their inadequacy, we propose a scheme, where the CR devices (equipped with agents) interact with their neighbors to form several coalitions over the unlicensed bands. These types of coalitions can provide a less-conflicted access as the agents mutually agree for spectrum sharing and they allow other CR users to enter in their vicinity of acquired spectrum via bilateral message exchanges. Further, we present continuous time Markov chains to model the spectrum access process in continuous time and derive important performance metric as the blocking probability for without and with queuing systems. Amongst others, the important comparisons we made between analytical and simulation results in terms of blocking probability verify that our proposed model is correct. In essence, our proposed solution aims to increase dynamic spectrum usage by enabling cooperation between the users.  相似文献   

5.
The most important challenge for the implementation of the Future Internet is to make the heterogeneity of access technologies transparent to the end user. Compared to the general case where the interworking networks are independent, the case of femtocells interworking with pre-existing wireless networks poses more challenges due to the sharing of the same backhaul capacity. Therefore, while a user is practically able to initiate the same service through multiple network interfaces, he is allocated capacity from the same capacity pool. However, while the femtocell inherits the QoS mechanisms of cellular networks and is able to provide a reliable CAC, this does not apply to the IP-based networks and that may drastically affect the performance of the femtocell. Hence, we propose an integrated Dynamic Service Admission Control (DSAC) framework for coexisting femtocell, wireless and wireline network environments. In particular, DSAC is able to provide QoS guarantees as a conventional capacity partitioning scheme while at the same time offers better performance in terms of acceptance probability and capacity utilization especially when short term variations of traffic load composition occur.  相似文献   

6.
Radio spectrum is a limited natural resource and with the increasing number of wireless devices, an efficient spectrum management concept to make a better utilization of this resource is essential. Opportunistic spectrum access (OSA) concept is a solution to increase the spectrum capacity and thus reducing the data collision for wireless ad hoc networks. Cognitive radio (CR) technology is developed to realize OSA. Based on CR, the secondary users access opportunistically the spectrum owned by primary users. However, the consequence appearance of primary users affects greatly the performance of secondary users within OSA. Thus, a new spectrum management scheme is a must to reduce such effect. In this paper, a new spectrum management scheme over a heterogeneous spectrum environment is proposed. The proposed scheme is based on using channels from both licensed and unlicensed bands as spectrum environment for ad hoc networks. An analytical model based on Markov chains is developed to evaluate the proposed scheme.  相似文献   

7.
Wireless Networks - Cognitive radios and femtocell networks are gaining much popularity due to the formers ability to carry out unlicensed transmission in licensed bands and the latter’s...  相似文献   

8.
Cognitive radio (CR) is a novel and promising spectrum management technique, which aims to cope with the spectrum scarcity problem occurring in unlicensed bands and alleviate the inefficient spectrum utilization of licensed bands. To ensure that the operation of licensed users will not be adversely affected and that the licensed bands can be efficiently utilized by unlicensed users, this paper proposes a cognitive radio MAC protocol called SMC-CR-MAC. When any primary user is detected, the proposed SMC-CR-MAC protocol applies Contiguous Channel Switching and Sender-Receiver Channel Swap rules to cope with the rendezvous, packet collision, and channel congestion problems. Simulation results show that the proposed SMC-CR-MAC protocol can significantly improve the network performance in terms of utilization of licensed bands, standard deviation of traffic load on each channel, and probability of successful rendezvous.  相似文献   

9.
Opportunistic spectrum access (OSA) is considered as a promising approach to mitigate spectrum scarcity by allowing unlicensed users to exploit spectrum opportunities in licensed frequency bands. Derived from the existing channel-hopping multiple access (CHMA) protocol,we introduce a hopping control channel medium access control (MAC) protocol in the context of OSA networks. In our proposed protocol,all nodes in the network follow a common channel-hopping sequence; every frequency channel can be used as control channel and data channel. Considering primary users' occupancy of the channel,we use a primary user (PU) detection model to calculate the channel availability for unlicensed users' access. Then,a discrete Markov chain analytical model is applied to describe the channel states and deduce the system throughput. Through simulation,we present numerical results to demonstrate the throughput performance of our protocol and thus validate our work.  相似文献   

10.
The FCC has allocated the band between 1920 MHz and 1930 MHz for unlicensed personal communications services (UPCS) using isochronous or circuit operation. The UPCS spectrum is between the licensed PCS spectrum bands of 1850-1910 MHz and 1930-1990 MHz. Terminal interoperability in both the UPCS spectrum on private indoor wireless systems and the licensed spectrum on public PCS systems is desirable and encouraged by the FCC. This paper presents a port channel assignment process for the personal access communications system-unlicensed B (PACS-UB) which abides by the FCC etiquette for UPCS and discusses the corresponding uplink and downlink performance. Uplink power control is employed to improve the uplink performance. PACS-UB has a high degree of commonality with licensed PACS to permit economical licensed/unlicensed terminals and common network services. The results of our simulation show that, at 1% to 2% blocking probability, 99% of downlink local-mean signal-to-noise plus interference ratio (SINR) values are above 17 dB for a 10 to 20 m port separation. For a three-dimensional office environment, the uplink limits the SINR performance, however, with uplink power control, a 5.5 to 7 dB improvement in the uplink SINR can be achieved even for high traffic load  相似文献   

11.
An access control engine with dynamic priority resource allocation (ACE-DPRA) is proposed for unlicensed users to utilize free spectrum of wireless communication systems. A cognitive radio (CR) network with sensing and learning abilities is essential for unlicensed users to achieve ACE-DPRA. Three algorithms are included in ACE-DPRA to improve the spectral efficiency. While requesting to set up connection, unlicensed CR users generate excessive interferences to licensed users. The proposed ACE-DPRA with an admission control scheme allows the connection of unlicensed CR users without degrading the communication quality of licensed users. The priority algorithm for utilizing the unused spectrum is designed according to the location information of unlicensed users. A transmitted power control method is achieved by a fuzzy-learning mechanism. The spectral efficiency of wireless communication systems can be increased after adopting the proposed ACE-DPRA algorithm. Simulation results show that licensed users keep the advantages of high transmission data rate, low interference power, and low average outage probability after the connection of unlicensed CR users.  相似文献   

12.
Dynamic spectrum access (DSA) is an important design aspect for the cognitive radio networks (CRNs). Most of the existing DSA schemes are to govern the secondary user traffic in a licensed spectrum without considering the transmissions also in the unlicensed bands. In this paper, we propose two DSA schemes (i.e., without and with buffer) for cognitive radios access in both licensed and unlicensed bands in a distributed CRN. A Markov chain analysis for each of the proposed DSA schemes is presented and forced termination probability, blocking probability and traffic throughput are derived. In addition, we discuss a number of errors in the Markov model and analysis of the blocking and forced termination probabilities in a CRN, given in Al-Mahdi et al. (IEEE Commun Lett 13(9):676–678, 2009). This paper shows the corresponding correct derivations and results, and simulation results are given to support our analyses.  相似文献   

13.
Optimized Access Network Selection in a Combined WLAN/LTE Environment   总被引:2,自引:2,他引:0  
Multimode terminals equipped with multiple radio access technologies are becoming increasingly popular. At the same time, network operators and service providers seek opportunities to deliver seamless services cost effectively, leveraging a variety of radio access technologies using both licensed and unlicensed spectrum. In order to standardize the operations of such complex environments 3GPP is currently working on IP flow mobility and mobile data offload solutions. This article proposes and evaluates a new access network selection procedure in such a combined WLAN/LTE environment. The proposed solution takes not only parameters available in the mobile node and its current and candidate access networks into account, but performs an optimization on the heterogeneous wireless network level as well. An optimization model based on an approximate solution to the well-known bin packing problem is presented. Also, there is a signaling scheme for distribution handling presented. Results from simulations performed in OPNET Modeler show improvements compared to basing handover decisions on locally available information only.  相似文献   

14.
徐珉  胡南  李男 《电信科学》2019,35(7):7-16
随着移动通信业务需求的不断增长,授权频段的短缺日益明显,5G网络亦开始考虑在非授权频段的部署,即使用NR协议在非授权频段提供接入服务。5G非授权频段组网的主要挑战是在5G新技术特性下支持LBT机制,保障同已有非授权全频段系统(WLAN、LTE LAA等)的公平性,合理共享频谱。从LBT机制的演进入手,分析了LBT对5G非授权频段组网的影响,归纳了相关的标准化进展及挑战,并针对突出的关键技术问题提出可行的创新解决方案,保障5G非授权频段组网性能,最小化LBT失败带来的影响。  相似文献   

15.
The unforeseen mobile data explosion as well as the scarce of spectrum resource pose a major challenge to the performance of today's cellular networks which are in urgent need of novel solutions to handle such voluminous mobile data. Long term evolution-unlicensed (LTE-U), which extends the LTE standard operating on the unlicensed band, has been proposed to improve system throughput. In LTE-U system, arriving users will contend the unlicensed spectrum resource with wireless fidelity (WiFi) users to transmit data information. Nevertheless, there is no clear consensus as to the benefits of transmission using unlicensed bands for LTE users. To this end, in this paper an analytical model is presented based on a queue system to understand the performance achieved by unlicensed based LTE system taking quality of services (QoS) and LTE-U users' behaviors into account. To obtain the stead-state solutions of the queue system, a matrix geometric method is used to solve it. Then, the average delay and utilization of unlicensed band for the LTE-U users is derived by using the queuing model. The performance of LTE-U coexistence is evaluated with WiFi using the proposed model and provide some initial insights as to the advantage of LTE-U in practice.  相似文献   

16.
Opportunistic unlicensed access to the (temporarily) unused frequency bands across the licensed radio spectrum is currently being investigated as a means to increase the efficiency of spectrum usage. Such opportunistic access calls for implementation of safeguards so that ongoing licensed operations are not compromised. Among different candidates, sensing-based access, where the unlicensed users transmit if they sense the licensed band to be free, is particularly appealing due to its low deployment cost and its compatibility with the legacy licensed systems. The ability to reliably and autonomously identify unused frequency bands is envisaged as one of the main functionalities of cognitive radios. In this article we provide an overview of the regulatory requirements and major challenges associated with the practical implementation of spectrum sensing functionality in cognitive radio systems. Furthermore, we outline different design trade-offs that have to be made in order to enhance various aspects of the system's performance.  相似文献   

17.
Femtocells are considered as a solution for indoor high data rate demands. Interference mitigation is a fundamental challenge in two-tier femto–macrocell networks. In this paper, we consider six-sector macrocell layout for reducing the co-tier interference in the macrocell network and cross-tier interferences from macrocell to femtocell network. As interference reduces, the whole of available spectrum can be used in each macrocell which increases the spectrum efficiency. We also consider interference-level algorithm to allocate resource for femtocell in which macrocell uses the whole of spectrum. In the coverage area of each sector, femtocell uses a portion of the spectrum that is not used by the macrocell users. This approach ignores the high co-channel interference from the macrocell network to the femtocell network and vice versa in each sector. Simulation results show that the proposed layout and interference management scheme reduce the downlink interference and increase the efficiency of the orthogonal frequency division multiple access (OFDMA)-based femtocell and macrocell. Consequently, system throughput and outage probability are improved significantly.  相似文献   

18.
19.
To utilize spectrum resources more efficiently, dynamic spectrum access attempts to allocate the spectrum to users in an intelligent manner. Uncoordinated sharing with cognitive radio (CR) users is a promising approach for dynamic spectrum access. In the uncoordinated sharing model, CR is an enabling technology that allows the unlicensed or secondary users to opportunistically access the licensed spectrum bands (belonging to the so‐called primary users), without any modifications or updates for the licensed systems. However, because of the limited resources for making spectrum observations, spectrum sensing for CR is bound to have errors and will degrade the grade‐of‐service performance of both primary and secondary users. In this paper, we first propose a new partial spectrum sharing policy, which achieves efficient spectrum sharing between two licensed networks. Then, a Markov chain model is devised to analyze the proposed policy considering the effects of sensing errors. We also construct a cross‐layer design framework, in which the parameters of spectrum sharing policy at the multiple‐access control layer and the spectrum sensing parameters at the physical layer are simultaneously coordinated to maximize the overall throughput of the networks, while satisfying the grade‐of‐service constraints of the users. Numerical results show that the proposed spectrum sharing policy and the cross‐layer design strategy achieve a much higher overall throughput for the two networks. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
With the advent of various emerging wireless products, the usage of limited spectrum has grown exponentially in the recent years. In the next few years, that mobile data traffic globally is expected to grow up to 50 EB/month, which is nearly a five times increase over year 2018. Therefore, it will become extremely difficult to satisfy the ever increasing demand through the current fixed spectrum assignment policy in which spectrum band is exclusively used for the particular applications, and it has also led to underutilization of a significant portion of the spectrum (like TV bands). Cognitive radio networks has emerged as a possible solution for the problem which makes dynamic spectrum access possible for unlicensed user when licensed user is not active. Among various operations of cognitive radio, channel assignment to the unlicensed user is very important. Further, wireless regional area network is one of the most important application of cognitive radio, which provides wireless broadband to the rural area using vacant TV channels. This paper discusses channel assignment techniques considering various functionalities for cognitive radio networks in respect of wireless regional area network in the existing literature. Initially, a comprehensive introduction to both cognitive radio networks and wireless regional area networks is provided, and in the end, the paper summarizes the various issues and research challenges in the channel assignment for wireless regional area networks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号