首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
采用数值模拟的方法,对在旋转情况下的有弦向出流的梯形扰流柱通道内的三维流场进行了模拟研究。重点研究了在固定出流比的情况下,不同转速对扰流柱通道内的流动情况及端壁平均换热系数的影响。计算结果表明:R_o不为0时,通道内的流场与静止时相比有较大变化,在扰流柱区域内的扰动强度明显增大,流动更加紊乱,在扰流柱区域和无柱区域内均有涡旋现象发生;当Re数一定时,通道的压降和端壁的平均换热系数随着旋转数R_o的增大而增加;旋转对扰流柱通道的压降和端壁换热系数有明显影响,旋转对扰流柱通道流动及换热的影响随通道数Re数的增大而增强。  相似文献   

2.
针对涡轮叶片尾缘吸力面热应力集中,容易造成叶片尾部烧毁的现象,提出端部冲击扰流柱结构,采用Realizable k-ε湍流模型和增强壁面函数分析涡轮叶片尾缘内部流场和吸力面换热特性,研究不同冲击孔与扰流柱排列方式的影响,揭示端部冲击扰流柱结构的流场与换热机理。研究表明,端部冲击扰流柱结构对于改善吸力面的换热效果要优于中间冲击扰流柱结构,对端壁的换热有显著提高;各表面平均换热系数均随着压比的增大而增大,顺排结构时,冲击孔换热最强,扰流柱换热次之;叉排结构时,冲击孔换热最强,隔板迎风换热次之;近距离冲击,顺排的综合效果优于其它几种结构,而远距离冲击,叉排的综合效果最好,其吸力面温度分布较均匀。  相似文献   

3.
针对涡轮叶片尾缘"冲击+扰流柱"复合典型冷却结构,通过分析内部流场和换热特性,揭示"冲击+扰流柱"冷却结构中流动发展的过程以及冲击对压力分布和流场分布的影响,揭示涡轮叶片尾缘区内射流冲击扰流柱排通道内换热机理,详细分析了冲击下各个表面的换热情况。结果表明,压比的增大能够有效改善冷却通道端壁的换热性能,但同时增大了压力损失;在两种冲击距离下,n=3d换热效果优于n=6d,但是n=6d的下游换热覆盖效果优于n=3d。顺排时,冲击孔的平均换热系数大约是扰流柱的1.5倍;叉排时,冲击孔的平均换热系数大约是扰流柱的3倍,而其它部位的平均换热系数受排列方式的影响很小。因此,"冲击+扰流柱"冷却结构的匹配,对于优化涡轮叶片尾缘区域的换热及其重要。  相似文献   

4.
应用-两方程模型对分离结构扰流柱的叶片内冷通道的换热与流动进行了三维数值模拟研究,扰流柱的布置按简单叉排方式。计算结果表明:在本文的参数范围内,与完整扰流柱相比,分离结构扰流柱的换热效果略有增强,而阻力系数随之增大,分离位置居中的扰流柱通道的换热效果最好。随着开缝厚度的增加,通道表面换热效果和流动阻力系数均先略有增大而后逐渐减小。  相似文献   

5.
为合理设计航空发动机涡轮动叶尾缘冷却结构,采用ANSYS FLUENT软件模拟了四种扰流柱截面形状在旋转状态下的流动换热特性。对比分析了不同旋转数(Ro)和不同扰流柱截面形状时通道内部的三维流场分布、湍流动能分布、努塞尔数(Nu)分布以及阻力系数。其中扰流柱的截面形状包含圆形、菱形、矩形和椭圆形,Ro数包含0、0.2、0.4和0.6四种数值。模拟过程中通道入口雷诺数为7 000,壁面恒定热流为1 000 W/m2。结果表明,截面形状和旋转数对流动和换热状态有着显著影响,矩形扰流柱通道的换热系数和阻力系数最高;随着旋转数的增加,迎风面和背风面的换热系数差异逐渐增大;在旋转作用下,扰流柱尾缘区域出现了纵向二次流,该二次流显著破坏了壁面附近的边界层,有利于背风面换热增强。  相似文献   

6.
为了探究扰流柱对间断交叉肋通道流动与换热特性的影响,针对不同扰流柱数量和排布位置建立了不同的交叉肋模型,并通过数值模拟的方法,计算了各模型的阻力系数比、强化换热系数以及综合热效率3个性能指标的变化情况。研究结果表明:随着扰流柱数量的增大,阻力系数比和强化换热系数逐渐增大,而综合热效率不断下降;在进口雷诺数为20 000时,14柱模型与32柱模型相比,阻力系数比升高了15.4%,强化换热系数升高了32%,综合热效率提高了2.6%;将相同数量的扰流柱排布在通道内的不同位置对综合热效率的影响并不明显。  相似文献   

7.
针对微尺度阵列射流冲击结构的流动与换热特性,选取冲击孔为D=0.4mm、0.5mm、0.6mm,冲击距H/D=1.0、1.5、2.0,叉排和顺排结构的长圆形扰流柱,雷诺数Re范围为1000~10 000,保证与真实燃气轮机工况相等的气动参数下,对微尺度列射流冲击结构的流动与换热情况进行分析比较,结果表明:在相同的雷诺数下,长圆形扰流柱的排列方式对冲击靶面平均换热影响很小,对局部换热分布影响很大,叉排方式的换热分布均匀、温度梯度小;随着孔径的增大,下游强换热面积覆盖区域增大,但是在相同的流量下,D=0.4mm的靶面平均换热系数是远高于D=0.6mm;靶面平均换热系数随着冲击距H/D的增大而减小。因此,在最小的冷气量下,尽可能减小涡轮叶片内冷结构的尺寸可大大增强内通道的换热效果。  相似文献   

8.
采用数值模拟方法对两种具有浇注缺陷的扰流柱通道的换热和流动阻力特性进行了模拟,重点研究了断裂结构和束腰结构扰流柱的影响,并与完整扰流柱通道进行了比较。结果表明所研究的扰流柱通道与完整扰流柱通道相比,其换热效果和压力损失系数相差不大。具有断裂结构和束腰结构的扰流柱减轻了叶片的重量,降低加工精度,对通道的流动和换热特性的影响不大,甚至具有一定的强化传热作用。  相似文献   

9.
对相同质量流量下的光管、双层光管、带冷却结构(肋、扰流柱、凹坑、螺旋通道)的双层管等不同结构的管流动进行了流固耦合三维数值模拟,获取了固体壁温的分布特征;对各结构下,外层壁冷热侧温差、冷气温升、流动特性及综合换热效率进行了研究分析。研究结果表明:相同质量流量下,带螺旋通道双层管的外层壁冷热侧温差最小、综合换热效率最高;凹坑结构双层管与双层光管的流动及换热特性相似,流阻较小但换热效果也较差;扰流柱和肋结构双层管的流动换热特性相近,其温度分布均匀性、换热量介于双层光管和螺旋通道双层管之间,其流阻大且综合换热效率低。  相似文献   

10.
用稳态法进行了竖直平行平板间加扰流柱的抽吸式自然对流换热实验研究,全面考虑了包括辐射损失在内的各项修正,得到了精度不低于10%的经验公式。实验发现,对于不加扰流柱的平行平板通道,当温差大于50℃时,换热系数随间距的变化存在极值;小间距加扰流柱时,扰流柱对流动的阻滞起主要作用,换热系数低于无扰流柱时的值。  相似文献   

11.
This paper describes a model of heat transfer for the convection section of a biomass boiler. The predictions obtained with the model are compared to the measurement results from two boilers, a 50 kWth pellet boiler and a 4000 kWth wood chips boiler. An adequate accuracy was achieved on the wood chips boiler. As for the pellet boiler, the calculated and measured heat transfer rates differed more than expected on the basis of the inaccuracies in correlation reported in the literature. The most uncertain aspect of the model was assumed to be the correlation equation of the entrance region. Hence, the model was adjusted to improve the correlation. As a result of this, a high degree of accuracy was also obtained with the pellet boiler. The next step was to analyse the effect of design and the operating parameters on the pellet boiler. Firstly, the portion of radiation was established at 3–13 per cent, and the portion of entrance region at 39–52 per cent of the entire heat transfer rate under typical operating conditions. The effect of natural convection was small. Secondly, the heat transfer rate seemed to increase when dividing the convection section into more passes, even when the heat transfer surface area remained constant. This is because the effect of the entrance region is recurrent. Thirdly, when using smaller tube diameters the heat transfer area is more energy‐efficient, even when the bulk velocity of the flow remains constant. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
M. AL-ARABI 《传热工程》2013,34(3-4):76-83
Correlation of the data for heat transfer between a fluid in turbulent flow and the entrance region of a tube is made for the entrance shapes normally used in heat exchangers. Equations representing the variation of the “average heat transfer” with tube length, Reynolds number, and Prandtl number are suggested.  相似文献   

13.
新型多孔铜微通道散热技术采用多孔铜微通道结构,增加热沉与冷却工质的接触面积,提高热沉的散热性能。利用单室金属-气体共晶定向凝固工艺,通过控制冷却速度、过热度、气压等工艺参数,从而制备优质的多孔铜材料。根据多孔铜微通道热沉散热原理,搭建散热性能测试平台,研究冷却工质流量、多孔铜材料的孔径和孔隙率、入口截面斜率角对多孔铜微通道热沉散热性能的影响规律。结果表明:增加冷却工质流量有利于提高多孔铜微通道热沉的散热性能;在恒定体积流量下,减小孔径有利于提高多孔铜微通道热沉的散热性能;当多孔铜孔隙率为30.8%时,多孔铜微通道热沉散热性能最佳;入口截面斜率角对多孔铜微通道热沉散热性能的影响较小。  相似文献   

14.
The effect of step height on heat transfer to a radially outward expanded air flow stream in a concentric annular passage was studied experimentally. Separation, subsequent reattachment and developed air flow occurred in the test section at a constant heat flux boundary condition. The experimental investigation was focused on the effect of separation flow on the local and average convection heat transfer. The experimental set-up consists of concentric tubes to form annular passage with a sudden reduction in passage cross-section created by the variations of outer tube diameter at the annular entrance section (D). The outer tube of test section was made of aluminium having 83 mm inside diameter and 600 mm heated length, which was subjected to a constant wall heat flux boundary condition. The investigation was performed in a Re range of 17050-44545, heat flux varied from 719 W/m2 to 2098 W/m2 and the enhancement of step heights were, s = 0 (without step), 6 mm, 14.5 mm and 18.5 mm, which refer to d/D = 1, 1.16, 1.53 and 1.80, respectively.For all cases, an increase in the local heat transfer coefficient was obtained against enhanced heat flux and or Re. The effect of step variation is prominent in heat transfer at the separation region which increases with the rise of step height and it shows a little effect in the redevelopment region. In the separation region, the local heat transfer coefficient increases up to the maximum value at the reattachment point and then decreases gradually in the redevelopment region. The results have been correlated and compared with forced convection heat transfer in annular passage and show a maximum enhancement of 18% (Smax = 18.5 mm) within the range of step height. The present results show good agreement with previous works and have followed similar trends.  相似文献   

15.
Experimental investigations have been carried out to study the effect of combined wedge ribs and winglet type vortex generators (WVGs) on heat transfer and friction loss behaviors for turbulent airflow through a constant heat flux channel. To create a reverse flow in the channel, two types of wedge (right-triangle) ribs are introduced: wedge ribs pointing downstream and pointing upstream. The arrangements of both rib types placed inside the opposite channel walls are in-line and staggered arrays. To generate longitudinal vortex flows through the tested section, two pairs of the WVGs with the attack angle of 60° are mounted on the test channel entrance. The test channel has an aspect ratio, AR = 10 and height, H = 30 mm with a rib height, e/H = 0.2 and rib pitch, P/H = 1.33. The flow rate in terms of Reynolds numbers is based on the inlet hydraulic diameter of the channel ranging from 5000 to 22,000. The presence of the combined ribs and the WVGs shows the significant increase in heat transfer rate and friction loss over the smooth channel. The Nusselt number and friction factor values obtained from combined the ribs and the WVGs are found to be much higher than those from the ribs/WVGs alone. In conjunction with the WVGs, the in-line wedge pointing downstream provides the highest increase in both the heat transfer rate and the friction factor while the staggered wedge pointing upstream yields the best thermal performance.  相似文献   

16.
In agricultural greenhouses, effective heating systems are essential for maintaining proper temperature control and air circulation during the winter. This study delves into the analysis of heat exchange through natural convection within heated greenhouses, with a particular emphasis on the impact of bottom heating. Two distinct types: mono-chapel and bi-chapel, each featuring triangular or spherical roofs are examined. To capture the variable roof shapes, we employ a change-of-variable method, and the numerical solutions are obtained using the finite volume method. The results show that heat transfer is enhanced by increasing the Rayleigh number. This improvement differs according to the shape of the roof. Heat transfer decreases by about 5% for the spherical mono-chapel case compared to the triangular case for Ra = 103. For Ra = 105, the monospherical case favors heat transfer, with an increase of 0.35% compared to the triangular case. In the case of bi-chapel roof, heat transfer is greater with a triangular roof for Ra = 103, showing an increase of 6.4% compared to the spherical case. This study not only sheds light on the fundamental aspects of heat transfer in greenhouses but also provides valuable insights for optimizing greenhouse design based on specific roof configurations and heating conditions.  相似文献   

17.
该文利用所建立的纤维复合相变材料相变问题的焓法求解模型,对影响人口传热单元的传热特性的各参数进行了分析,为进行纤维复合相变材料的优化设计提供了参考。  相似文献   

18.
纪律  李斌 《节能》2010,29(11):29-32
同时对普通翅片管和带有两个短肋的翅片管在均匀流场中、不同雷诺数下进行了流场和传热的数值模拟,分析了带有短肋的翅片管强化传热的机理。结果表明,由于翅片上带有的短肋和短肋后面的开孔,减少了翅片管管后流动的死滞区,提高了局部地区流体的流速,增加了扰动,从而起到了强化传热的作用。取入口雷诺数为20000时,加装短肋后可使总传热量增加5.1%,平均表面传热系数增加23.56%。随着雷诺数的增加,总换热量增加,强化传热效果也增强。  相似文献   

19.
We present in this paper a fundamental hydrothermal investigation of the next generation interlayer integrated water cooled three-dimensional (3D) chip stacks, with high volumetric heat generation. Such investigation of flow through microcavities with embedded heat transfer structures such as micro pin-fin arrays and microchannels is crucial for the successful realization of 3D chip stacks. We focus mainly on the complex physics of the entrance region of the cooling microcavities in order to assess its importance. The flow and heat transfer in the entrance region is strongly influenced by developing boundary layers and, as we show herein, the development lengths can occupy a significant portion of the microcavity due to the size restrictions of the 3D chip stack. These effects make a fundamental understanding of conjugate heat transfer in microcavities with heat transfer structures a necessity. The flow field and heat transfer in the entrance region are characterized by means of correlations determining the effective coolant permeability as well as the heat transfer coefficient as a function of the streamwise coordinate x, the flow Reynolds number (Re) and the Prandtl number. Based on a thermal non-equilibrium porous medium model relying on these results, a substantially improved estimation of pressure drop and temperature distribution inside the chip stack is realized. The modeling results are validated against measurements on a 3D chip stack simulator. The range of flow rates and thermal loads in the hot spots of the chip stack, over which it is crucial to consider the developing hydrothermal effects, are analyzed and discussed in detail. Moreover, microchannel and micro pin-fin structures are compared, showing more than 20% increased performance of the latter for all operating conditions investigated.  相似文献   

20.
Abstract

A numerical study is performed to investigate heat transfer and fluid flow in the entrance and fully developed regions of an annulus, consisting of a rotating, insulated inner cylinder and a stationary, heated outer cylinder. Several different k-ε turbulence models are employed to determine the turbulent kinetic energy, its dissipation rate, and the heat transfer performance. The governing boundary layer equations are discretized by means of a control volume finite difference technique and numerically solved using the marching procedure. In the entrance region the axial rotation of the inner cylinder induces a thermal development and causes an increase in both the Nusselt number and the turbulent kinetic energy in the inner cylinder wall region. In the fully developed region, an increase in the Taylor number causes an amplification of the turbulent kinetic energy over the whole cross section, resulting in a substantial enhancement in the Nusselt number. These transport phenomena are also affected by the radius ratio and Reynolds number.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号