首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 615 毫秒
1.
贾岩  刘东青  程海峰 《材料工程》1990,(收录汇总):215-221
采用一锅法合成不同形貌、尺寸的氧化铟锡(ITO)纳米晶,并通过旋涂工艺制备ITO纳米晶薄膜,研究不同形貌、尺寸ITO纳米晶制备的薄膜的近红外光谱调控性能。结果表明:5次旋涂后,ITO纳米晶薄膜的可见光透过率为89.2%,电阻率为54Ω·cm。平均直径为(6.88±1.53)nm的均匀球形ITO纳米晶制备的薄膜表现出最优的近红外光谱调控能力,在施加±2.5 V电压后,其在2000 nm的光谱调制量为39.3%,光密度变化量为0.43。在电致变色前后,ITO纳米晶薄膜始终保持高可见光透过率。ITO纳米晶的电致变色是由于电子注入/脱出导致的局域表面等离子体共振(LSPR)频率和强度变化引起,其电致变色过程是通过电容充放电实现的。  相似文献   

2.
本文在掺LiClO4与碳酸丙烯酯的聚乙二醇固体电解质离子电导特性与WO3、NiO薄膜离子插入性能研究了基础上,设计并制备了互补型WO3/NiO全固态电变色器件。同时研究了该器件变色过程的循环伏安特性与不同状态的可见、近红外透过特性。结果表明,互补型的WO3/PEG-LiClO4-PC/NiO器件在可见与近红外均具有良好的电变色特性,其漂白态在波长600nm的透过率为70%,着色态为20%。  相似文献   

3.
采用中频孪生非平衡磁控溅射技术,制备了纳米晶结构NiOx电致变色薄膜。利用原子力显微镜、掠射X射线衍射、电化学设备、紫外分光光度计等测试手段分析薄膜结构及电致变色特性。结果表明:室温沉积获得表面质地均匀的NiOx薄膜;在±3V致色电压下,薄膜电致变色性能优异,对可见光透过率调制范围达30%以上,但薄膜寿命低。获得的薄膜为结构疏松的纳米晶结构,易于离子的注入和抽取,变色性能优异,但易发生Li+不可逆注入,薄膜寿命低。  相似文献   

4.
质轻、柔性、多色电致变色材料是柔性电致变色显示技术实用化、进而取代目前阴极射线管和液晶显示技术的关键。主链共轭型本征态导电聚合物聚苯胺因其原料来源广泛、转换电势低、变色范围宽、易于制成柔性薄膜而成为制备全固态柔性电致变色器件的首选材料。基于静电作用的层状自组装技术,能在分子层次上实现诸多材料的复合,并实现结构与性能的调控,因此成为设计组装具有特定性能的聚苯胺纳米复合电致变色薄膜的重要方法。讨论了层状自组装聚苯胺纳米复合电致变色薄膜的制备与性能,认为采用结构与性能可控的纳米结构层状自组装技术制备聚苯胺纳米复合电致变色薄膜是提高其综合性能并最终实用化的重要途径。  相似文献   

5.
采用射频反应溅射制备了纳米晶WO3薄膜.基于Berg理论建立了WO3射频反应溅射模型,并分析工艺参数对滞回曲线的影响,基于研究了抽速、基片温度、馈入功率、靶片间距和溅射靶等离子体溅射面积的影响.提出了一种新的消除滞回曲线的制备纳米晶WO3薄膜的方法和优化的工艺参数.论文制备了性能良好的电致变色纳米晶WO3薄膜.分别用环境扫描电镜(ESEM)、X射线光电子能谱(XPS),X射线衍射(XRD)和分光光度计测试了该薄膜,该薄膜在可见光波段,不变色时的透光率大于95%,变色后为65%.纳米晶WO3薄膜的晶粒尺寸在40纳米左右,其高比表面积和缺陷态为电致变色的例子扩散提供了通道.  相似文献   

6.
为改善WO3薄膜的电致变色性能, 采用溶胶-凝胶法制备了聚乙二醇(PEG)改性的WO3电致变色薄膜, 并对其着色态与漂白态的光学特性以及循环伏安特性进行了研究。研究表明: PEG改性的WO3薄膜具有良好的电致变色性能, 循环5000次伏安曲线无明显衰减, 对可见光的最大透过率调制幅度可达71%。PEG的加入改变了WO3薄膜的微结构, 形成了平均直径为9 nm的介孔, 提高了离子在其中的扩散速率, 因此改善了WO3薄膜的电致变色性能。由于循环稳定性对于电致变色材料的实际应用至关重要, 因此这种低成本的湿化学法有望用于制备高性能的WO3基电致变色器件。  相似文献   

7.
电致变色纳米氧化镍薄膜的溶胶-凝胶法制备与表征   总被引:3,自引:0,他引:3  
以无水氯化镍、乙醇为前驱液,加入适量的丁醇和柠檬酸为稳定剂,通过回流、水解得到稳定的溶胶;采用浸渍-提拉的方法在ITO导电玻璃上形成均匀的膜层;分析了溶胶制备中加水量的影响;研究了热处理温度对制备膜层的结构、光透过率的影响;对经过不同处理的膜层进行X射线衍射、透射电子显微镜、扫描电子显微镜、热重分析等研究表明:在空气中加热到350℃、保温30min薄膜分解为稳定的具有立方结构的NiO纳米晶;以氢氧化钾水溶液为电解质的循环伏安、电致变色实验结果表明制备的纳米氧化镍薄膜具有良好的电致变色特性.  相似文献   

8.
采用电化学沉积法在阳极氧化制备的TiO2纳米管阵列管壁上沉积一层CeO2纳米颗粒,再将CeO2修饰的透明TiO2纳米管阵列薄膜对电极与聚三甲基噻吩变色电极组装成透过型电致变色器件.实验结果表明:CeO2修饰的TiO2纳米管阵列薄膜仍保持良好的光透过性,其电荷存储能力比纯TiO2纳米管电极提高了30%.经CeO2修饰的TiO2纳米管改善了器件的性能,与对电极为单一TiO2纳米管阵列的器件相比,其对比度仍保持在38%左右,其褪色时间由1.3 s缩短为0.8 s.电致变色器件快速响应得益于纳米管与纳米颗粒组成的复合结构的高比表面积和快速的电荷传输过程.  相似文献   

9.
近年来,在电致变色领域基于甲基紫精修饰高比表面积的纳米TiO2薄膜电极取得了巨大的进步,并将这项技术推向商业化.本文介绍了一种由有机变色分子修饰纳米晶TiO2薄膜电极而组装成的电致变色器件,通过"嫁接"在甲基紫精分子上的磷酸基和纳米TiO2薄膜电极表面的羟基化学吸附,我们得到了具有良好电致变色性能的"电子纸".本文采用的电解质是0.05mol/L的高氯酸锂和0.05mol/L的二茂铁的1,4丁内酯溶液,对电极为透明导电玻璃.实验证明该电致变色器件具有很高的稳定性,并达到了毫秒级的响应速度,在未来显示领域"电子纸"的商业化进程中具有很大的潜力.  相似文献   

10.
任豪  李筱琳  毕君  罗宇强 《真空》2003,(5):8-11
采用真空电子束蒸发方法制备WO3电致变色薄膜过程中,利用极值法光学膜厚测量技术监控薄膜的光学特性,对不同光学膜厚的WO3薄膜的原始态、着色态和退色态的光谱特性进行了对比分析。测试采用二电极恒电压方法,用分光光度计实时测量透过率的变化。结果证明以ITO玻璃作为比较片,极值法监控薄膜光学膜厚,当反射率达到第一极小值,即透过率达到第一极大值时,WO3薄膜得到最好的综合电致变色特性。  相似文献   

11.
Conjugated polymers are promising materials for electrochromic device technology. Aqueous dispersions of poly(3,4-ethylenedioxythiophene)-(PEDOT) were spin coated onto transparent conducting oxide (TCO) coated glass substrates. A seven-layer electrochromic device was fabricated with the following configuration: glass/transparent conducting oxide (TCO)/PEDOT (main electrochromic layer)/gel electrolyte/prussian blue (counter electrode)/TCO/glass. The device fabricated with counter electrode (Prussian blue) showed a contrast of 18% and without counter electrode showed visible contrast of 5% at 632 nm at a voltage of 1.9 V. The comparison of the device is done in terms of the colouration efficiency of the devices with and without counter electrode.  相似文献   

12.
Color combination of conductive polymers for black electrochromism   总被引:1,自引:0,他引:1  
Conducting polymers that absorb three primary colors, red, green, and blue (RGB), were introduced with a yellow electrochromic polymer (Y) for the preparation of black electrochromic devices. Red poly(3-hexylthiophene) (P3HT) and blue poly(3,4-ethylenedioxythiophene) (PEDOT) were coated on one side of the electrode as a cathodically coloring electrochromic (EC) layer, while green poly(aniline-N-butylsulfonate) (PANBS) and yellow EC poly{[1,3-bis(9',9'-dihexylfluoren-20-yl)azulenyl]-alt-[2",7"-(9",9"-dihexylfluorenyl]} (PDHFA) were coated on the opposite electrode to complete a complementary EC device. The yellow PDHFA layer effectively compensated for absorption below 450 nm and above the 600 nm region, which was lacking in the RGB electrode. The resultant RGBY ECD provided a black color near the CIE black with L*, a*, and b* values of 32, -1.1, and 3.7, respectively, covering a broad absorption in the visible range in the colored state. The state of the black EC device was maintained, even after the electricity was turned off for 200 h, showing stable memory effect.  相似文献   

13.
This work describes the use of template synthesis to produce materials with optimized properties to be used in electrochromic devices. A composite prepared by the inclusion of polyaniline within the pores of a cellulose acetate was used as primary electrochromic layer and a porous V2 5 phase was used as an auxiliary electrode to counter balance the charge in the entire device. The device closed with a gel polymer electrolyte exhibited a very high optical contrast (light yellow to dark blue) with ΔT750 nm=78%. However, the optical response time indicates a slow ion exchange during electrochromic cycles. By comparing the voltammogram and the curve obtained by differentiation of the absorbance variation with time, it was possible to identify the contribution of each redox couple to the total color change.  相似文献   

14.
It is of great challenge to develop a transparent solid state electrochromic device which is foldable at the device level. Such devices require delicate designs of every component to meet the stringent requirements for transparency, foldability, and deformation stability. Meanwhile, nanocellulose, a ubiquitous natural resource, is attracting escalating attention recently for foldable electronics due to its extreme flexibility, excellent mechanical strength, and outstanding transparency. In this article, transparent conductive nanopaper delivering the state‐of‐the‐art electro‐optical performance is achieved with a versatile nanopaper transfer method that facilitates junction fusing for high‐quality electrodes. The highly compliant nanopaper electrode with excellent electrode quality, foldability, and mechanical robustness suits well for the solid state electrochromic device that maintains good performance through repeated folding, which is impossible for conventional flexible electrodes. A concept of camouflage wearables is demonstrated using gloves with embedded electrochromics. The discussed strategies here for foldable electrochromics serve as a platform technology for futuristic deformable electronics.  相似文献   

15.
Sun XW  Wang JX 《Nano letters》2008,8(7):1884-1889
We report an electrochromic (EC) display using a viologen-modified ZnO nanowire array as the EC electrode. The ZnO nanowire array was grown directly on an indium tin oxide (ITO) glass by a low temperature aqueous thermal decomposition method and then modified with viologen molecules. The ZnO nanowire electrochromic device shows fast switching time (170 and 142 ms for coloration and bleaching respectively for a 1 cm (2) cell), high coloration efficiency (196 C (-1) cm (2)) and good stability. The improved performance of the ZnO nanowires EC device can be attributed to the large surface area and high crystalline and good electron transport properties of the ZnO nanowire array.  相似文献   

16.
通过在紫罗精溶液中加入钛离子, 得到了一种新型互补型的电致变色溶液. 利用这种电致变色溶液设计成电致变色器件, 通过紫外-可见分光光度计表征, 这种溶液型电致变色器件透过率变化在600nm附近可由80%降低到20%; 通过电致变色器件和透射光强变化的关系, 测得其退色时间<2s, 并且具有自擦除效果.  相似文献   

17.
将铈钛氧簇[Ti8O7(HOEt)(OEt)21Ce]和PEDOT低聚物的混合溶液通过滴涂-二次聚合成膜制得一种表面具有特殊纳米沟壑结构的无机/有机复合薄膜PEDOT:Ce@TiO2。PEDOT:Ce@TiO2具有很强的疏水性和对乙腈溶液较好的润湿性, 能用作阴极电致变色材料和超级电容器电极材料。PEDOT:Ce@TiO2展现出较PEDOT薄膜更优良的电化学性能, 在电流密度为1 A/g时, PEDOT:Ce@TiO2的质量比电容为71.2 F/g, 是相同条件下PEDOT薄膜的质量比电容的1.7倍。采用PEDOT:Ce@TiO2进一步组装了全固态电致变色超级电容器原型器件, 当充电完成时器件的变色区域呈现墨绿色, 当放电完成时器件的变色区域呈现亮黄色。  相似文献   

18.
Electrochromic devices have been widely adopted in energy saving applications by taking advantage of the electrode coloration, but it is critical to develop a new electrochromic device that can undergo smart coloration and can have a wide spectrum in transmittance in response to input light intensity while also functioning as a rechargeable energy storage system. In this study, a photoresponsive electrochromic supercapacitor based on cellulose‐nanofiber/Ag‐nanowire/reduced‐graphene‐oxide/WO3‐composite electrode that is capable of undergoing “smart” reversible coloration while simultaneously functioning as a reliable energy‐storage device is developed. The fabricated device exhibits a high coloration efficiency of 64.8 cm2 C?1 and electrochemical performance with specific capacitance of 406.0 F g?1, energy/power densities of 40.6–47.8 Wh kg?1 and 6.8–16.9 kW kg?1. The electrochromic supercapacitor exhibits excellent cycle reliability, where 75.0% and 94.1% of its coloration efficiency and electrochemical performance is retained, respectively, beyond 10 000 charge–discharge cycles. Cyclic fatigue tests show that the developed device is mechanically durable and suitable for wearable electronics applications. The smart electrochromic supercapacitor system is then integrated with a solar sensor to enable photoresponsive coloration where the transmittance changes in response to varying light intensity.  相似文献   

19.
钙钛矿锰氧化物(Perovskite manganese oxide, PMO)因受外界条件激励而发生变色的特性, 在散热领域中受到广泛关注。目前绝大多数针对PMO的变色特性的研究都是以温度激励为基础, 以电场激励实现的散热器件仍旧缺乏。由于电场激励伴随着焦耳热的影响, 目前PMO材料是否存在电致变色性能尚未得到明确证明。针对以上问题, 本研究利用电场激励对PMO内部Mn元素的影响, 提出了一种针对PMO材料的电改性方法。通过电改性大幅减弱PMO热致变色性能, 进而使La0.7Ca0.25K0.05MnO3(LCKMO)在电场激励实验中能够排除焦耳热的影响。对LCKMO电改性前后的热致变色及电致变色性能进行研究。电改性前的LCKMO发射率随温度升高而增大, 最大增量为17%。并且在受21 V电场激励后, 其发射率在173、203、243、273和373 K分别出现了15%、16%、10%、0.6%和1.4%的增量。电改性后的LCKMO热致变色性能大幅减弱, 且在受21 V电场激励后, 其发射率在273和373 K出现了10.7%和9.3%的增量。电改性前后的实验结果表明: LCKMO存在电致变色性能, 并且电场激励对LCKMO发射率的调控机制存在明显规律。此外, 针对PMO材料的电改性方法不仅能令PMO材料在排除焦耳热的影响下进行电致变色研究, 更为调控PMO材料热致变色性能提供了新的可能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号