首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Each of four groups of six wethers were fed one of a low molybdenum, high molybdenum, low molybdenum plus copper sulfate, or high molybdenum plus copper sulfate corn silage-based diet for ad libitum intake for 221 days. Average daily gains and ratios of feed/gain were depressed for the high molybdenum diet as compared with the low molybdenum diet suggesting molybdenum toxicity in sheep fed the high molybdenum diet. This was alleviated partly by the copper sulfate supplement. The supplement also decreased solubility of both copper and molybdenum in the rumen but had no effect on copper concentration in blood plasma. Concentration of molybdenum was higher in both liver and kidney in sheep fed high-molybdenum diets as compared with low-molybdenum diets. Copper concentration was higher in kidneys of sheep fed high-molybdenum diets, but no difference was significant in liver copper between sheep fed diets high or low in molybdenum.  相似文献   

2.
The objective was to measure rumen fermentation and duodenal flow of amino acids and nonammonia N components in five groups of five ruminally and duodenally cannulated wethers that were fauna-free, or inoculated with the ciliate protozoa genera of Isotricha, Dasytricha, Entodinium, or a normal population (total) of fauna. They were used in two 25-d periods and fed a haycrop-based diet in the first period and a corn silage-based diet in the second period. Feces, duodenal digesta, and rumen contents were sampled in each period and analyzed. The number of Entodinium in wethers containing the Entodinium monofauna was higher than the total protozoa numbers, including Entodinium, in wethers containing total fauna population. The type of diet or fauna did not affect total volatile fatty acid concentrations in rumen fluid. The ammonia N concentration in rumen fluid was higher in wethers containing total fauna (25 mg/100 ml) than in fauna-free wethers fed the two diets (18 and 12 mg/ 100 ml). In comparison with the respective fauna-free wethers, the concentration of ammonia in wethers containing Entodinium was higher when fed the corn silage diet, but not different when fed the haycrop diet. Ruminal presence of total fauna or Entodinium decreased the nonammonia N by 16 and 17%, and total amino acid flows from the stomach by 20 and 19%, respectively. Flow of bacteria N was decreased in wethers fed the two diets when Entodinium or total fauna were present in the rumen. The presence of Isotricha resulted in higher flow of bacteria N in wethers fed the haycrop diet, but the presence of Dasytricha resulted in higher bacteria N flow in wethers fed the corn silage diet. Entodinium was the most detrimental of ciliate protozoa species concerning protein nutrition of the host ruminant.  相似文献   

3.
Neonatal Holstein heifer (n = 72) and bull (n = 40) calves were used to study the effects of Aspergillus oryzae fermentation extract (Amaferm) on their performance and on rumen development. The starter diets were formulated to achieve Amaferm consumption of 0, .5, 1, or 3 g per calf daily. Calves were fed milk daily and allowed to consume starter and a mixture of alfalfa and bromegrass hay ad libitum. Weaning was when calves consumed 550 g of starter on 2 consecutive d. Weight gain and feed consumption were recorded weekly. Forty of the heifer calves, 10 from each treatment, were selected randomly to study the effects of Amaferm on ruminal fermentative development. Ruminal fluid samples were collected for pH, ruminal fermentation products, and for bacterial enumerations. Overall, Amaferm-supplemented calves were weaned 1 wk earlier than unsupplemented calves. They had higher total VFA, propionate, and acetate concentrations in the rumen than unsupplemented calves. Total anaerobic, hemicellulolytic, and pectinolytic bacterial counts were higher; cellulolytic bacterial counts tended to be higher for the Amaferm-supplemented calves than for controls. In general, Amaferm-supplemented calves had greater ruminal microbial activity than those not fed Amaferm.  相似文献   

4.
A study was conducted to investigate the effects of physically effective (pe) neutral detergent fiber (NDF) content of dairy cow diets containing corn silage as the sole forage type on feed intake, meal patterns, chewing activity, and rumen pH. The experiment was designed as a replicated 3 × 3 Latin square using 6 lactating dairy cows with ruminal cannulas. Diets were chemically similar but varied in peNDF content (high, medium, and low) by altering corn silage particle length. The physical effectiveness factors for the long (original), medium (rechopped once), and fine (rechopped twice) silages were determined using the Penn State Particle Separator and were 0.84, 0.73, and 0.67, respectively. The peNDF contents of the diets were 11.5, 10.3, and 8.9%, for the high, medium, and low diets, respectively. Increased forage particle length increased intake of peNDF but did not affect intake of DM or NDF. Number of chews (chews/d) and chewing time, including eating and ruminating time, were linearly increased with increasing dietary peNDF. Meal patterns were generally similar for all treatments, except that number of meals was quadratically increased with increasing dietary peNDF. Mean ruminal pH, area between the curve and a horizontal line at pH 5.8 or 5.5, and time that pH was below 5.8 or 5.5 were not affected by peNDF content. Dietary peNDF content was moderately correlated to number of chews during eating (r = 0.41) and to total chewing time (r = 0.37). The present study demonstrates that increasing the peNDF content of diets increased chewing time, but increased chewing time did not necessarily reduce ruminal acidosis. Models that predict rumen pH should include both peNDF and fermentable OM intake. Dietary particle size, expressed as peNDF, was a reliable indicator of chewing activity.  相似文献   

5.
The objective of this study was to investigate the effects of physically effective neutral detergent fiber (peNDF) content of dairy cow diets containing barley silage as the sole forage source on feed intake, chewing activity, and ruminal pH. The experiment was designed as a replicated 3 × 3 Latin square using 6 lactating dairy cows with ruminal cannulas. Cows were offered 1 of 3 diets (high, medium, and low peNDF) obtained using barley silage that varied in particle length: long (theoretical cut length of 9.5 mm), medium (equal proportions of long and fine silages), and fine (theoretical cut length of 4.8 mm). The peNDF contents were determined using the Penn State Particle Separator and were 13.8, 11.8, and 10.5%, for the high, medium, and low diets, respectively. The physical effectiveness factors (defined as proportion retained on 19- and 8-mm screens) for the long and fine silages were 0.84 and 0.68, respectively. Increased forage particle size increased intake of peNDF but did not affect intake of DM and NDF. Ruminating and total chewing time were linearly increased with increasing dietary peNDF. Mean ruminal pH, area between the curve and a horizontal line drawn at pH 5.8 or 5.5, and time that pH was below 5.8 or 5.5 were not affected by peNDF content. Intake of peNDF was not correlated to any chewing activity but proportion of long particles on the 19-mm sieve tended to be correlated to ruminating chews (r = 0.36) and ruminating time (r = 0.36). These results indicate that increasing the peNDF content of diets increases chewing time. However, increased chewing time does not always improve ruminal pH status. Increasing chewing time and thus increasing salivary secretion may not fully overcome the effects of feed digestion and the production of fermentation acids that lower rumen pH. The results suggest that dietary peNDF and fermentable OM intake are critical in regulating rumen pH. Dietary particle size, expressed as peNDF, was a reliable indication of chewing activity.  相似文献   

6.
Thirty Holstein cows were used in a 12-wk trial to study the effects of salmon meal and urea on lactational performance. Two experimental diets, one containing 5.6% salmon meal and the other 5.2% salmon meal plus .42% urea, were compared with a soybean meal control diet. Salmon meal and urea replaced a portion of the soybean meal. Dietary undegraded intake protein levels (expressed as percentage of CP) were 28.8, 35.6, and 32.4% for soybean meal, salmon meal, and salmon meal plus urea. Total mixed diets (average 17.3% CP, 17.6% ADF) consisting of 60% concentrate mixture and 40% bromegrass silage (DM basis) were fed twice daily. Total DMI was lower with salmon meal compared with soybean meal (20.2 versus 22.2 kg/d); salmon meal plus urea (21.2 kg/d) was intermediate. Actual milk production was similar for all diets (average 41.1 kg/d). Percentage milk fat and 4% FCM yield were lower with salmon meal (2.56%, 31.6 kg/d) and salmon meal plus urea (2.50%, 31.4 kg/d) than with soybean meal (3.03%, 35.9 kg/d). Gross efficiency (weight FCM/weight DMI) was higher for soybean meal than for salmon meal and salmon meal plus urea. Acetate: propionate tended to be higher with the soybean meal diet. The use of a high oil fish meal to provide a source of rumen undegraded intake protein, alone or in combination with urea, resulted in a decrease in milk fat percentage and yield without any beneficial effects on milk production or lactational efficiency.  相似文献   

7.
The objective of this study was to evaluate the effect of an exogenous amylase preparation on digestion of low- and high-starch diets in dairy cattle. Rumen and total-tract nutrient digestibility were measured in a 4 × 4 Latin square design with 28-d periods using 4 first-lactation cows cannulated at the rumen and duodenum. Corn silage-based diets had 20 or 30% starch, attained by changing the composition of concentrate, with or without addition of an exogenous amylase preparation. Effects of the enzyme additive were observed on ruminal digestibility but not at the total-tract level. Ruminal digestibility of starch increased from 75% in control to 81% with amylase supplementation. This difference in ruminal starch digestion was compensated postruminally, so that the total-tract digestibility of starch was almost complete and did not differ between treatments. The amylase supplement also increased the true ruminal digestibility of organic matter but did not affect microbial N flow to the duodenum. Amylase supplement reduced the proportion of acetate and butyrate and increased that of propionate, particularly in the high-starch diet, where it tended to increase the concentration of total volatile fatty acids in the rumen. Other effects were a higher amylase activity in the solid-associated microbial community and a tendency for lower numbers of protozoa. In contrast, we observed no changes in intake, production, dry matter and fiber (neutral detergent fiber and acid detergent fiber) digestibility, or ruminal digestion, and no or small changes on selected fibrolytic and amylolytic bacteria and on the microbial community in general. We conclude that the exogenous amylase improved starch digestion in the rumen in first-lactation cows with moderate intake and production levels.  相似文献   

8.
Wet corn gluten feed (WCGF), a byproduct of the wet-milling industry, is commonly substituted in lactating dairy rations for both forages and concentrates. Previous research has shown that increasing WCGF in the diet decreased ruminal pH, likely due in part to decreasing particle size as forage inclusion rate decreased. The objective of this study was to maintain at least 10% of ration particles >19mm in length across diets while increasing WCGF inclusion in the diet. We hypothesized that as WCGF increased in this scenario, dry matter intake (DMI) and milk yield would increase and ruminal pH would be maintained. Seven ruminally cannulated, lactating Holstein cows (4 multiparous and 3 primiparous) were used in an incomplete 4×4 Latin square design. Treatments included 0, 12.4, 24.5, or 35.1% WCGF and used alfalfa hay to maintain particle size. Across treatments, crude protein and neutral detergent fiber concentrations were held relatively constant. Four 21-d periods were used with 17d of adaptation and 4d of sample collection. Indwelling ruminal pH probes were used during sampling periods and recorded pH every 5min. Particle size of total mixed rations and orts were analyzed using a Penn State Particle Separator (The Pennsylvania State University, University Park). Results were analyzed with mixed models to test the fixed effect of treatment. All diets contained ≥10% of particles >19mm; however, as WCGF increased, the proportion of particles >19mm decreased. Interestingly, with increasing WCGF, cows sorted for the particles >19mm but against particles on the bottom screen and pan. With increasing WCGF, ruminal pH was not affected, but DMI and milk yield increased in a quadratic fashion, with the peak responses for the 24.5% WCGF diet. Milk protein, lactose, and fat concentrations were not affected by treatment; however, milk protein and lactose yields increased with the inclusion of WCGF because of the increased milk yield. Production efficiency was not affected by treatments. Thus, if adequate particle size is maintained when WCGF increases in the diet, DMI and milk yield increase while maintaining production efficiency and ruminal pH.  相似文献   

9.
Effects offorage particle size measured as physically effective NDF and ratio of alfalfa silage to alfalfa hay of diets on feed intake, chewing activity, particle size reduction, salivary secretion, ruminal fermentation, and milk production of dairy cows were evaluated using a 4 x 4 Latin square design with a 2 x 2 factorial arrangement of treatments. The diets consisted of 60% barley-based concentrate and 40% forage, comprised either of 50:50 or 25:75 of alfalfa silage:alfalfa hay, and alfalfa hay was either chopped or ground. Various methods were used to determine physically effective NDF content of the diets. Cows surgically fitted with ruminal and duodenal cannulas were offered ad libitum access to these total mixed diets. The physically effective NDF content of the diets was significantly lower when measured using the Penn State Particle Separator than when measured based on particles retained on 1.18-mm screen. Intake of DM was increased by increasing the ratio of silage to hay but was not affected by physically effective NDF content of diets. Eating time (hours per day) was not affected by the physically effective NDF content of diets, although cows spent more time eating per unit of DM or NDF when consuming high versus low alfalfa hay diets. Ruminating time (hours per day) was increased with increased physically effective NDF content of the diets. Rumen pH was affected more by changing dietary particle size than altering the ratio of silage to hay. Feeding chopped hay instead of ground hay improved ruminal pH status: time during which ruminal pH was above 6.2 increased and time during which ruminal pH was below 5.8 decreased. Milk production was increased by feeding higher concentrations of alfalfa silage due to increased DM intake, but was not affected by dietary particle size. Feed particle size, expressed as mean particle length or physically effective NDF was moderately correlated with ruminating time but not with eating time. Although physically effective NDF and chewing time were not correlated to mean rumen pH, they were negatively correlated to the area between the curve and pH 5.8, indicating a positive effect on reducing the risk of acidosis. Milk fat content was correlated to rumen pH but not to physically effective NDF or chewing activity. These results indicate that increasing physically effective NDF content of the diets increased chewing activity and improved rumen pH status but had limited effect on milk production and milk fat content.  相似文献   

10.
This study evaluated the effects of replacing barley silage (BS) with corn silage (CS) in dairy cow diets on enteric CH4 emissions, ruminal fermentation characteristics, digestion, milk production, and N balance. Nine ruminally cannulated lactating cows were used in a replicated 3 × 3 Latin square design (32-d period) and fed (ad libitum) a total mixed ration (TMR; forage:concentrate ratio 60:40; dry matter basis) with the forage portion consisting of either barley silage (0% CS; 0% CS and 54.4% BS in the TMR), a 50:50 mixture of both silages (27% CS; 27.2% CS and 27.2% BS in the TMR), or corn silage (54% CS; 0% BS and 54.4% CS in the TMR). Increasing the CS proportion (i.e., at the expense of BS) also involved increasing the proportion of corn grain (at the expense of barley grain). Intake and digestibility of dry matter and milk production increased linearly as the proportion of CS increased in the diet. Increasing dietary CS proportion decreased linearly the acetate molar proportion and increased linearly that of propionate. Daily CH4 emissions tended to respond quadratically to increasing proportions of CS in the diet (487, 540, and 523 g/d for 0, 27, and 54% CS, respectively). Methane production adjusted for dry matter or gross energy intake declined as the amount of CS increased in the diet; this effect was more pronounced when cows were fed the 54% CS diet than the 27% CS diet. Increasing the CS proportion in the diet improved N utilization, as reflected by decreases in ruminal ammonia concentration and urinary N excretion and higher use of dietary N for milk protein secretion. Total replacement of BS with CS in dairy cow diets offers a strategy to decrease CH4 energy losses and control N losses without negatively affecting milk performance.  相似文献   

11.
The objective of this study was to investigate the effects of changing forage source in dairy cow diets from timothy silage (TS) to alfalfa silage (AS) on enteric CH4 emissions, ruminal fermentation characteristics, digestion, milk production, and N balance. Nine ruminally cannulated lactating cows were used in a replicated 3 × 3 Latin square design (32-d period) and fed (ad libitum) a total mixed ration (TMR; forage:concentrate ratio of 60:40, dry matter basis), with the forage portion consisting of either TS (0% AS; 0% AS and 54.4% TS in the TMR), a 50:50 mixture of both silages (50% AS; 27.2% AS and 27.2% TS in the TMR), or AS (100% AS; 54.4% AS and 0% TS in the TMR). Compared with TS, AS contained less (36.9 vs. 52.1%) neutral detergent fiber but more (20.5 vs. 13.6%) crude protein (CP). In sacco 24-h ruminal degradability of organic matter (OM) was higher for AS than for TS (73.5 vs. 66.9%). Replacement of TS with AS in the diet entailed increasing proportions of corn grain and bypass protein supplement at the expense of soybean meal. As the dietary proportion of AS increased, CP and starch concentrations increased, whereas fiber content declined in the TMR. Dry matter intake increased linearly with increasing AS proportions in the diet. Apparent total-tract digestibility of OM and gross energy remained unaffected, whereas CP digestibility increased linearly and that of fiber decreased linearly with increasing inclusion of AS in the diet. The acetate-to-propionate ratio was not affected, whereas ruminal concentration of ammonia (NH3) and molar proportion of branched-chain VFA increased as the proportion of AS in the diet increased. Daily CH4 emissions tended to increase (476, 483, and 491 g/d for cows fed 0% AS, 50% AS, and 100% AS, respectively) linearly as cows were fed increasing proportions of AS. Methane production adjusted for dry matter intake (average = 19.8 g/kg) or gross energy intake (average = 5.83%) was not affected by increasing AS inclusion in the diet. When expressed on a fat-corrected milk or energy-corrected milk yield basis, CH4 production increased linearly with increasing AS dietary proportion. Urinary N excretion (g/d) increased linearly when cows were fed increasing amounts of AS in the diet, suggesting a potential for higher nitrous oxide (N2O) and NH3 emissions. Efficiency of dietary N use for milk protein secretion (g of milk N/g of N intake) declined with the inclusion of AS in the diet. Despite marked differences in chemical composition and ruminal degradability, under the conditions of this study, replacing TS with AS in dairy cow diets was not effective in reducing CH4 energy losses.  相似文献   

12.
This study was conducted to determine the effects of feeding Fermenten (Church and Dwight Co., Princeton, NJ) with or without dietary sucrose on ruminal fermentation, apparent total-tract nutrient digestibility, and nutrient utilization. Eight ruminally cannulated Holstein cows (163 ± 55 d in milk; mean ± standard deviation) were used in a replicated 4 × 4 Latin square design with a 2 × 2 factorial arrangement of treatments. Experimental diets were formulated with and without Fermenten (0 vs. 3.3% of dietary DM) at 2 dietary sugar concentrations (2.8 vs. 5.7%). Dietary treatment did not affect dry matter intake or apparent total-tract nutrient digestibility. Feeding Fermenten did not affect ruminal pH, but high-sugar diets tended to increase the daily minimum pH (5.61 vs. 5.42) and mean pH (6.17 vs. 6.30) compared with low-sugar diets. Ruminal ammonia concentration tended to be greater for cows fed Fermenten compared with control (18.1 vs. 15.9 mg/dL), but was not affected by dietary sugar concentration. Significant interactions between Fermenten and dietary sugar concentration were detected for some milk production responses. Fermenten treatment numerically increased milk fat yield (0.92 vs. 0.82 kg/d), 4% fat-corrected milk yield (24.3 vs. 21.9 kg/d), and milk energy output (18.2 vs. 16.4 Mcal/d) compared with control for cows fed low-sugar diets, but not for cows fed high-sugar diets. Increasing dietary sugar concentration did not enhance the effects of Fermenten, providing no support for the theory that synchronizing the availability of N and fermentable energy in the rumen improves nutrient utilization in lactating dairy cows.  相似文献   

13.
The aim of this work was to investigate the effect of feeding ethyl-3-nitrooxy propionate (E3NP) and 3-nitrooxypropanol (3NP), 2 recently developed compounds with potential antimethanogenic activity, in vitro and in vivo in nonlactating sheep on ruminal methane production, fermentation pattern, the abundance of major microbial groups, and feed degradability. Three experiments were conducted, 1 in vitro and 2 in vivo. The in vitro batch culture trial (experiment 1) tested 2 doses of E3NP and 3NP (40 and 80 μL/L), which showed a substantial reduction of methane production (up to 95%) without affecting concentration of volatile fatty acids (VFA). The 2 in vivo trials were conducted over 16 d (experiment 2) and 30 d (experiment 3) to study their effects in sheep. In experiment 2, 6 adult nonpregnant sheep, with permanent rumen cannula and fed alfalfa hay and oats (60:40), were treated with E3NP at 2 doses (50 and 500 mg/animal per day). After 7, 14, and 15 d of treatment, methane emissions were recorded in respiration chambers and rumen fluid samples were collected for VFA analysis and quantification of bacterial, protozoal, and archaeal numbers by real-time PCR. Methane production decreased by 29% compared with the control with the higher dose of E3NP on d 14 to 15. A decrease in the acetate:propionate ratio was observed without detrimental effects on dry matter intake. In experiment 3, 9 adult nonpregnant sheep, with permanent rumen cannula and fed with alfalfa hay and oats (60:40), were treated with E3NP or 3NP at one dose (100 mg/animal per day) over 30 d. On d 14 and d 29 to 30, methane emissions were recorded in respiration chambers. Rumen fluid samples were collected on d 29 and 30 for VFA analysis and quantification of bacterial, protozoal, and archaeal numbers by real-time PCR. In addition, on d 22 and 23, samples of oats and alfalfa hay were incubated in the rumen of sheep to determine dry matter ruminal degradation over 24 and 48 h, respectively; no effect was observed (78.6, 78.3, and 78.8% of alfalfa and 74.2, 74.0, and 70.6% of oats in control, E3NP, and 3NP groups, respectively). A reduction in methane production was observed for both additives at d 14 and d 29 to 30. In both treatments, the acetate:propionate ratio was significantly decreased. Likewise, total concentrations of the analyzed microbial groups in the rumen showed no difference among treatments and doses for both experiments. Both tested compounds showed promise as methane inhibitors in the rumen, with no detrimental effects on fermentation or intake, which would need to be confirmed in lactating animals.  相似文献   

14.
This study was conducted to evaluate the effects of chestnut tannins (CT) and coconut oil (CO) on growth performance, methane (CH4) emission, ruminal fermentation, and microbial populations in sheep. A total of 48 Rideau Arcott sheep (average body weight 31.5 ± 1.97 kg, 16 wk old) were randomly assigned into 6 treatment groups in a 3 × 2 factorial design, with CT and CO as the main effects (8 sheep per group). The treatments were control diet (CTR), 10 or 30 g of CT/kg of diet (CT10 and CT30), 25 g of CO/kg of concentrate (CO25), and 10 or 30 g of CT/kg of diet + 25 g of CO/kg of concentrate (CT10CO25 and CT30CO25). After the feeding trial (60 d), all sheep were moved to respiratory chambers to measure CH4 emission. After CH4 emission measurements, all sheep were slaughtered to obtain rumen fluid samples. Results showed that the addition of CT, CO, and CT + CO had no significant effects on growth performance of sheep but reduced CH4 emission. Addition of CT reduced the NH3-N concentration in rumen fluid in CT30. Addition of CO decreased the concentration of total volatile fatty acids in rumen fluid. No significant differences were observed in pH and molar proportion of volatile fatty acids among treatments. Addition of CT, CO, and CT + CO significantly decreased methanogen and protozoa populations. Moreover, CO decreased counts of Fibrobacter succinogenes. No significant differences were observed in populations of fungi, Ruminococcus flavefaciens, or Ruminococcus albus among treatments. In conclusion, supplementation of CT and CO seemed to be a feasible means of decreasing emissions of CH4 from sheep by reduction of methanogen and protozoa populations with no negative effect on growth performance.  相似文献   

15.
Eighteen multiparous and 9 primiparous Holstein cows were used to determine the effects of a 13 and 23% crude protein concentrate on milk fat depression during early lactation. Beginning on d 22 postpartum, cows were fed a high fiber diet (27% acid detergent fiber) for 3 wk and then switched to a low fiber diet (9 to 10% acid detergent fiber) for 6 wk. Crude protein percentages calculated from dry matter consumption were 13.5 and 17.9% during the high fiber period and 12.7 and 22.3% during the low fiber period. Daily milk and fat yields for both primiparous and multiparous cows were greater for the high protein treatment. The magnitude of decline in milk fat percentage (from high to low fiber) was greater for the low protein treatment, as determined by nonlinear regression. The high protein treatment was more effective in reducing the severity of milk fat depression in primiparous cows than in multiparous cows. Dietary crude protein had no effect on milk protein or solids-not-fat percentages, rumen volatile fatty acid molar proportions, or serum acetate concentration. The mechanism by which the high protein ration minimized the fat depression response to low fiber rations by primiparous cows is unknown.  相似文献   

16.
Our objective was to develop a buffer value index that would incorporate alterations in both ruminal fluid pH and buffering capacity as indicators of the influence of dietary buffering and alkalinizing agents on ruminal acid-base status. This index was evaluated using ruminal fluid from four lactating Holstein cows fed either sorghum silage or alfalfa hay in high or low concentrate diets. Ruminal fluid was incubated in vitro for 1, 2, 3, 4, or 5 h with no buffer or with 7.1 g of either NaHCO3, sodium sesquicarbonate, or a multielement buffer added per liter of ruminal fluid. Ruminal fluid pH was lower for diets based on high concentrate or alfalfa; buffering capacity between pH 5 and 7 was greater for high concentrate diets but was not affected by forage type. Ruminal fluid pH was higher for sesquicarbonate than for NaHCO3, the multielement buffer, or the control; however, ruminal fluid H+ concentration was similar between sesquicarbonate and NaHCO3, and both were lower than for the multielement buffer. Hydrogen ion concentration for the multielement buffer was lower than for the control. Buffering capacity was highest for NaHCO3, followed by sesquicarbonate, the multielement buffer, and the control. The buffer value index, which accounted for alterations in both H+ concentration and buffering capacity, was highest for NaCHO3, followed by sesquicarbonate, the multielement buffer, and the control. The poor response to the multielement buffer may be attributable to our relatively short incubation interval (less than 5 h). Dietary buffers increase both ruminal fluid pH and buffering capacity; both of these responses are beneficial.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
In cattle, proper rumen functioning and digestion are intimately linked to chewing behavior. Yet, high grain feeding impairs chewing activity, increasing the risk of subacute ruminal acidosis and dysfermentation. This study aimed to screen 9 different phytogenic compounds for their potential to modulate chewing activity, meal size, rumino-reticular short-chain fatty acids (SCFA), and pH during consumption in a first daily meal and shortly thereafter in cattle fed a grain-rich diet. Treatments were control (total mixed ration without phytogenic) or addition of a phytogenic compound at a low or high dose. Phytogenic compounds and doses (all in mg/kg) were angelica root (6.6 and 66), capsaicin (10 and 100), gentian root (6.6 and 66), garlic oil (0.3 and 3), ginger extract (40 and 400), L-menthol (6.7 and 67), mint oil (15.3 and 153), thyme oil (9.4 and 94), and thymol (5 and 50), for the low and high groups, respectively. Before the start of the screening experiment, cows were fed to reach subacute ruminal acidosis conditions, confirmed with the time of ruminal pH <5.8 being 655 ± 148.2 min/d. During the screening experiment, the treatments were offered in a controlled meal (2.5 kg of DM for 4 h) as part of the daily diet with 65% concentrate. Each treatment was tested in 4 of the 9 cannulated Holstein cows using an incomplete Latin square design. Ruminal and reticular fluids were sampled before and after each treatment, and data collected before the meal were used as covariates. Chewing and ruminal pH were monitored during the treatment, followed by 2 h of complete feed restriction, and then 4 h of ad libitum feed intake without phytogenic. Data showed that supplementation of angelica root tended to linearly increase rumination time immediately after the first meal when feed was restricted (27.3, 41.9, and 42.6 ± 5.99 min for control, low and high groups, respectively). Capsaicin increased eating time (43.6, 49.4, and 66.4 ± 4.93 min) during consumption but did not affect ruminal total SCFA or mean ruminal pH. Garlic oil reduced the concentration of reticular total SCFA (75.7, 71.3, and 60.1 mM) and tended to decrease ruminal acetate-to-propionate ratio (2.50, 1.78, and 1.87 ± 0.177) with no effect on ruminal pH. The L-menthol affected reticular total SCFA quadratically (76.1, 64.9, and 81.0 ± 4.22%), and ruminal pH responded quadratically when feed was reintroduced ad libitum (6.0, 6.3, and 6.1 ± 0.07). Mint oil did not affect chewing or total SCFA during consumption, but the low dose increased ruminal pH (6.5, 6.7, and 6.5 ± 0.08). Thyme oil tended to lower the severity of ruminal acidosis. Overall, phytogenic compounds demonstrated distinct dose-dependent effects to beneficially influence chewing behavior, modulate fermentation, and mitigate ruminal acidosis in dairy cows under a high-grain challenge diet.  相似文献   

18.
This study investigated the effects of bacterial direct-fed microbials (DFM) on ruminal fermentation and microbial characteristics, methane (CH4) emission, diet digestibility, and milk fatty acid (FA) composition in dairy cows fed diets formulated to induce different ruminal volatile fatty acid (VFA) profiles. Eight ruminally cannulated dairy cows were divided into 2 groups based on parity, days in milk, milk production, and body weight. Cows in each group were fed either a high-starch (38%, HS) or a low-starch (2%, LS) diet in a 55:45 forage-to-concentrate ratio on a dry matter (DM) basis. For each diet, cows were randomly assigned to 1 of 4 treatments in a Latin square design of (1) control (CON); (2) Propionibacterium P63 (P63); (3) P63 plus Lactobacillus plantarum 115 (P63+Lp); (4) P63 plus Lactobacillus rhamnosus 32 (P63+Lr). Strains of DFM were administered at 1010 cfu/d. Methane emission (using the sulfur hexafluoride tracer technique), total-tract digestibility, dry matter intake, and milk production and composition were quantified in wk 3. Ruminal fermentation and microbial characteristics were measured in wk 4. Data were analyzed using the mixed procedure of SAS (SAS Institute Inc., Cary, NC). The 2 diets induced different ruminal VFA profiles, with a greater proportion of propionate at the expense of acetate and butyrate for the HS diet. Greater concentrations of total bacteria and selected bacterial species of methanogenic Archaea were reported for the HS diet, whereas the protozoa concentration in HS decreased. For both diets, bacterial DFM supplementation raised ruminal pH (+0.18 pH units, on average) compared with CON. Irrespective of diet, P63+Lp and P63+Lr increased ruminal cellulase activity (3.8-fold, on average) compared with CON, but this effect was not associated with variations in ruminal microbial numbers. Irrespective of diet, no effect of bacterial DFM on ruminal VFA was observed. For the LS diet, supplementing cows with P63+Lr tended to decrease CH4 emission (26.5%, on average, when expressed per kilogram of milk or 4% fat-corrected milk). Only P63 supplementation to cows fed the HS diet affected the concentration of some milk FA, such as cis isomers of 18:1 and intermediates of ruminal biohydrogenation of polyunsaturated FA. Overall, bacterial DFM could be useful to stabilize ruminal pH. Their effects on CH4 production mitigation and milk FA profile depended on DFM strain and diet and should be confirmed under a greater variation of dietary conditions.  相似文献   

19.
Five primiparous Holstein cows (483 kg BW) of low productivity were used in a 4 x 5 incomplete Latin square design to study the effects of feeding two levels of grain containing soybean meal and one level of grain containing fish meal on feed intake, milk production, digestibility, and rumen fermentation. Animals all were fed alfalfa silage for ad libitum intake. Collection of data was between wk 11 and 24 of lactation. The four treatments were an all silage diet (control), silage and medium concentrate fed at 1.8% BW containing soybean meal, and silage and low concentrate fed at 1.3% BW containing either soybean meal or fish meal. Treatments other than control were designed to give similar CP intake from the concentrate, which was based on high moisture corn and cob meal. Milk production and composition were similar among treatments except for fat percentage, which was significantly lower for low grain soybean meal. Intake of DM was higher on medium grain soybean meal compared with the other treatments. Average BW and change in BW (.11 kg/d) were not affected by treatments. Digestibility of DM was higher for cows fed grain (68 to 73%) than for those fed the control diet (60%). Generally, feeding concentrate at 1.3 or 1.8% BW and supplementing with soybean meal or fish meal resulted in pH and concentrations of NH3 N and VFA similar to those observed on the all silage diet. Feeding concentrate at 1.3 or 1.8% BW and supplying fish meal or soybean meal did not change feed utilization enough to increase milk production in low producing cows compared with an all silage diet.  相似文献   

20.
Sixteen Holstein cows were used in a 4 x 4 Latin square design (four replicates) to investigate the effect of feeding calcium carbonate on feed intake, ruminal fermentation, apparent total tract nutrient digestibility, milk yield, and milk composition. Supplementation of calcium carbonate to diets that contained 60% concentrate and 40% corn silage (DM basis) decreased DM intake and milk production and was not effective in altering ruminal fluid pH, ruminal fluid dilution rate or outflow, molar proportions of ruminal fluid VFA, or synthesis of milk fat and milk protein by dairy cows. Calcium carbonate supplementation to the diet tended to improve efficiency of feed utilization (4% FCM/DM intake). The exact site of action of calcium carbonate, if any, is not known. However, these data suggest that calcium carbonate exerts little or no buffering effect in the rumen when the pH is 6 or above regardless of its reactivity rate in strong acid or its mean particle size. This lack of effect is probably because of its low solubility in ruminal fluid at pH above 5.5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号