首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
The purpose of this study is to experimentally analyse the performance and the pollutant emissions of a four-stroke SI engine operating on ethanol–gasoline blends of 0%, 5%, 10%, 15% and 20% with the aid of artificial neural network (ANN). The properties of bioethanol were measured based on American Society for Testing and Materials (ASTM) standards. The experimental results revealed that using ethanol–gasoline blended fuels increased the power and torque output of the engine marginally. For ethanol blends it was found that the brake specific fuel consumption (bsfc) was decreased while the brake thermal efficiency (ηb.th.) and the volumetric efficiency (ηv) were increased. The concentration of CO and HC emissions in the exhaust pipe were measured and found to be decreased when ethanol blends were introduced. This was due to the high oxygen percentage in the ethanol. In contrast, the concentration of CO2 and NOx was found to be increased when ethanol is introduced. An ANN model was developed to predict a correlation between brake power, torque, brake specific fuel consumption, brake thermal efficiency, volumetric efficiency and emission components using different gasoline–ethanol blends and speeds as inputs data. About 70% of the total experimental data were used for training purposes, while the 30% were used for testing. A standard Back-Propagation algorithm for the engine was used in this model. A multi layer perception network (MLP) was used for nonlinear mapping between the input and the output parameters. It was observed that the ANN model can predict engine performance and exhaust emissions with correlation coefficient (R) in the range of 0.97–1. Mean relative errors (MRE) values were in the range of 0.46–5.57%, while root mean square errors (RMSE) were found to be very low. This study demonstrates that ANN approach can be used to accurately predict the SI engine performance and emissions.  相似文献   

2.
To meet stringent vehicular exhaust emission norms worldwide, several exhaust pre-treatment and post-treatment techniques have been employed in modern engines. Exhaust Gas Recirculation (EGR) is a pre-treatment technique, which is being used widely to reduce and control the oxides of nitrogen (NOx) emission from diesel engines. EGR controls the NOx because it lowers oxygen concentration and flame temperature of the working fluid in the combustion chamber. However, the use of EGR leads to a trade-off in terms of soot emissions. Higher soot generated by EGR leads to long-term usage problems inside the engines such as higher carbon deposits, lubricating oil degradation and enhanced engine wear. Present experimental study has been carried out to investigate the effect of EGR on soot deposits, and wear of vital engine parts, especially piston rings, apart from performance and emissions in a two cylinder, air cooled, constant speed direct injection diesel engine, which is typically used in agricultural farm machinery and decentralized captive power generation. Such engines are normally not operated with EGR. The experiments were carried out to experimentally evaluate the performance and emissions for different EGR rates of the engine. Emissions of hydrocarbons (HC), NOx, carbon monoxide (CO), exhaust gas temperature, and smoke opacity of the exhaust gas etc. were measured. Performance parameters such as thermal efficiency, brake specific fuel consumption (BSFC) were calculated. Reduction in NOx and exhaust gas temperature were observed but emissions of particulate matter (PM), HC, and CO were found to have increased with usage of EGR. The engine was operated for 96 h in normal running conditions and the deposits on vital engine parts were assessed. The engine was again operated for 96 h with EGR and similar observations were recorded. Higher carbon deposits were observed on the engine parts operating with EGR. Higher wear of piston rings was also observed for engine operated with EGR.  相似文献   

3.
Owing to high growth rate, being non-edible, and environmental friendliness; microalgae is a promising third generation biodiesel raw material. In this study, hydrogen and hydroxy gas aspirated compression ignition engine which was fuelled with microalgae biodiesel and low sulphur diesel fuel blend were investigated in order to evaluate their combined effect. The results showed that the brake power and torque output of the test engine decreased with microalgae biodiesel usage. Moreover, microalgae biodiesel addition results in lower carbon monoxide and nitrogen oxides emissions, and higher carbon dioxide. The introduction of hydrogen and hydroxy gas compensated the decrement of torque and power output and increment of carbon dioxide emission. The study enlightened that usage of microalgae biodiesel with hydrogen and hydroxy gas addition is a very promising combination from the environmental viewpoint.  相似文献   

4.
This work presents the effect of the Di-tetra-butyl-peroxide (DTBP) as an oxygenated additive on neat used mustard oil biodiesel (B100) to evaluate the emission and performance engine characteristics. Four fuels, namely, diesel, biodiesel (Mustard biodiesel), a blend of B100-10percentage, and 20% by volume of DTBP (BD90DTBP10 and BD80DTBP20) are prepared and tested on a single cylinder, constant speed diesel engine. Experimental outcomes revealed that 20% of DTBP reduces 7.3% CO, 5.1% HC, and 4.6% NOx and 3.2% smoke emissions of B100. From this study, further, it is inferred that BD80DTBP20 blend could be utilized as an alternative fuel for a CI engine with no modifications in engine design.  相似文献   

5.
Biodiesel is an alternative fuel consisting of the alkyl esters of fatty acids from vegetable oils or animal fats. Vegetable oils are produced from numerous oil seed crops (edible and non-edible), e.g., rapeseed oil, linseed oil, rice bran oil, soybean oil, etc. Research has shown that biodiesel-fueled engines produce less carbon monoxide (CO), unburned hydrocarbon (HC), and particulate emissions compared to mineral diesel fuel but higher NOx emissions. Exhaust gas recirculation (EGR) is effective to reduce NOx from diesel engines because it lowers the flame temperature and the oxygen concentration in the combustion chamber. However, EGR results in higher particulate matter (PM) emissions. Thus, the drawback of higher NOx emissions while using biodiesel may be overcome by employing EGR. The objective of current research work is to investigate the usage of biodiesel and EGR simultaneously in order to reduce the emissions of all regulated pollutants from diesel engines. A two-cylinder, air-cooled, constant speed direct injection diesel engine was used for experiments. HCs, NOx, CO, and opacity of the exhaust gas were measured to estimate the emissions. Various engine performance parameters such as thermal efficiency, brake specific fuel consumption (BSFC), and brake specific energy consumption (BSEC), etc. were calculated from the acquired data. Application of EGR with biodiesel blends resulted in reductions in NOx emissions without any significant penalty in PM emissions or BSEC.  相似文献   

6.
In this study, three different fuels named G100 (pure gasoline), E20 (volume 20% ethanol and 80% gasoline blend) and ES20 (20% sodium borohydride added ethanol solution and 80% gasoline) were used to test in a gasoline engine. First of all, G100 fuel, E20 and ES20 blended fuels, respectively, were tested in a gasoline engine and the effects of fuels on engine performance and exhaust emissions were investigated experimentally. Experiments were carried out at full load and at five different engine speeds ranging from 1400 to 3000 rpm, and engine performance and exhaust emission values were determined for each test fuel. When the test results of the engine operated with E20 and ES20 blended fuels are compared with the test results of the engine operated with gasoline; engine torque of E20 blended fuel increased by 1.87% compared to pure gasoline, while engine torque of ES20 blended fuel decreased by 1.64%. However, the engine power of E20 and ES20 blended fuels decreased by 2.02% and 5.10%, respectively, compared to the power of pure gasoline engine, while their specific fuel consumption increased by 5.02% and 6.57%, respectively, compared to pure gasoline fueled engine. On the other hand, CO and HC emissions of the engine operated with E20 and ES20 blended fuels decreased compared to the pure gasoline engine, while CO2 and NOx emissions increased.  相似文献   

7.
The aim of this study is to determine the availability of pomegranate seed oil biodiesel (POB) as an alternative fuel in diesel engines and evaluate engine performance and emission characteristics of pure hydrogen enriched POB using diesel engine. For this purpose, the intake manifold of the test engine was modified and hydrogen enriched intake air was supplied throughout the experiments. Physical properties of POB and its blend with diesel fuel were also determined. The results showed that measured physical properties of POB are comparable with diesel fuel. According to engine performance experiments, although POB utilization has slight undesirable effects on some engine performance parameters such as brake power output and specific fuel consumption, it can be used as alternative fuel in diesel engines, by this way CO emission can be improved. Finally, hydrogen enrichment experiments indicated that pure hydrogen addition causes a slight improvement in both engine performance and exhaust emissions.  相似文献   

8.
Extensive studies have been dedicated in the last decade to the possibility to use hydrogen in the dual-fuel mode to improve combustion characteristics and emissions of a diesel engine. The results of these studies, using pure hydrogen or hydrogen containing gas produced through water electrolysis, are notably different.The present investigation was conducted on a tractor diesel engine running with small amounts of the gas—provided by a water electrolyzer—aspirated in the air stream inducted in the cylinder. The engine was operated at light and medium loads and various speeds.It was found that the addition of HRG gas has a slight negative impact, up to 2%, on the engine brake thermal efficiency. Smoke is significantly reduced, up to 30%, with HRG enrichment, while NOx concentrations vary in both senses, up to 14%, depending on the engine operation mode. A relative small amount of HRG gas can be used with favorable effects on emissions and with a small penalty in thermal efficiency.  相似文献   

9.
The blended biodiesel with up to 20% biodiesel in petroleum diesel (B20) is considered nowadays as available in production. Previous studies investigating the effect of B20 on engine emissions led to some contradictory results. The present study continued the investigation on B20, 20% biodiesel (rapeseed methyl esters) blend effects and was also extended on B20 enriched with hydrogen. It was conducted on a conventional tractor diesel engine running alternatively with B20 and petroleum diesel at various speeds and full load and then, with the same fuels enriched with hydrogen, at 60% load and two speeds.  相似文献   

10.
The aims of this study is to investigate the performance, combustion and exhaust emissions of a single-cylinder, air cooled, direct injection (DI), compression ignition engine using biodiesel from non-edible feedstock. In this work, biodiesel (B100) used to lead this investigation is Citrullus colocynthis L. methyl ester (CCME) and its blends B30 with diesel fuel. The biodiesel is produced via alkaline-catalyzed transesterification process using methanol (6:1 M ratio), 1% of sodium hydroxide at the reaction temperature of 60 °C for 1 h. The important physical and chemical properties of CCME are close to those of diesel fuel. Fuels (diesel fuel, B100 and B30) were tested on a DI diesel engine at 1500 rpm for various power outputs. The results indicated that B100 and B30 exhibit the same combustion characteristics compared to diesel fuel. However, B100 and B30 display earlier start of combustion. At lower engine loads, the peaks of cylinder pressure and heat release rate (HRR) were higher for B30 than B100 and diesel fuel during premixed combustion period. At higher engine loads the peaks of cylinder pressure was higher for B100 than B30 and diesel fuel, but the HRR during diffusion combustion is more considerable than diesel fuel. The brake specific fuel consumption (BSFC) was higher for B100 than diesel fuel at all engine loads while B30 exhibited comparable trends. The thermal efficiency is slightly higher for B100 than B30 and diesel fuel at low loads and increase for B30 at full loads.B30 and B100 provided a higher reduction of hydrocarbons emissions up to 50% for B100. Nitrogen oxides and particulate matter emissions were also reduced.  相似文献   

11.
In this investigation, Mahua Oil Ethyl Ester was prepared by transesterification using sulfuric acid (H2SO4) as catalyst and tested in a 4-stroke direct injection natural aspirated diesel engine. Tests were carried out at constant speed of 1500 rev/min at different brake mean effective pressures. Results showed that brake thermal efficiency of Mahua Oil Ethyl Ester (MOEE) was comparable with diesel and it was observed that 26.36% for diesel whereas 26.42% for MOEE. Emissions of carbon monoxide, hydrocarbons, oxides of nitrogen and Bosch smoke number were reduced around 58, 63, 12 and 70%, respectively, in case of MOEE compared to diesel. Based on this study, MOEE can be used a substitute for diesel in diesel engine.  相似文献   

12.
《能源学会志》2014,87(3):188-195
Biodiesel as an alternative diesel fuel prepared from vegetable oils or animal fats has attracted more and more attention because of its renewable and environmental-friendly nature. But biodiesel undergoes oxidation and degenerate more quickly than mineral diesel. Further several studies report NOx emissions increases for biodiesel fuel compared with conventional diesel fuel. In this paper, the experimental investigation of the effect of antioxidant additive (Butylated hydroxytoluene) on oxidation stability and NOx emissions in a methyl ester of neem oil fuelled direct injection diesel engine has been reported. The antioxidant additive is mixed in various proportions (100–400 ppm) with methyl ester of neem oil. The oxidation stability was tested in Rancimat apparatus and emissions, performance in a computerized 4-stroke water-cooled single cylinder diesel engine of 3.5 kW rated power. Results show that the antioxidant additive is effective in increasing the oxidation stability and in controlling the NOx emissions of methyl ester of neem oil fuelled diesel engines.  相似文献   

13.
The present work aims to investigate the effect of water addition to orange peel oil biodiesel (BD100) in a diesel engine to reduce the exhaust emissions. Fuel samples are prepared with different concentrations of water into biodiesel, 95% biodiesel + 5% water (BD95W5) and 90% orange peel oil biodiesel + 10% water (BD90W10). The water is added to biodiesel in presence of surfactant (Span-80). The experimental investigation on diesel engine reveals that the oxides of nitrogen emission and smoke emission are reduced for BD95W5 and BD90W10 compared to BD100 and diesel. In addition, the introduction of water to biodiesel in diesel engine reduces the carbon monoxide and hydrocarbon emissions noticeably.  相似文献   

14.
Influence of fuel oxygen content on diesel engine exhaust emissions   总被引:1,自引:0,他引:1  
The aim of this work was to investigate: the intersolubility of mixtures of rapeseed oil methyl esters, diesel fuel and ethanol; to determine the dependence of solubility upon temperature and finally to evaluate emissions of exhaust gases of these stable fuel mixtures.Bearing in mind that the cloud point is an important parameter of diesel fuel, the variation of solubility of a tri-component rapeseed oil methyl ester–diesel fuel–ethanol (RME–D–E) system at temperature (20; 0; −10 °C) was also investigated. It was found that temperature decrease causes the RME–D–E system solubility limits to become narrow. Solubility investigations allowed to determine the optimal solubility limits and select mixtures containing 6.9–25.7% of oxygen for engine tests. The highest oxygen content in biodiesel fuel permitting the engine to work normally at 2000 and 1200 min−1 was 19.5%. The lowest concentration of PAH and smoke index of exhaust gases were determined when fuel mixtures contained 19.5% of oxygen. The CO concentration depended on the rotational speed and varied from 10.7% to 16.8%. Apparently, optimal diesel fuel on this basis will contain from 15% to 19% of oxygen.  相似文献   

15.
The transient operation of turbocharged diesel engines can prove quite demanding in terms of engine response, systems reliability and exhaust emissions. It is a daily encountered situation that drastically differentiates the engine operation from the respective steady-state conditions, requiring careful and detailed study and experimentation. On the other hand, depleting reserves and growing prices of crude oil, as well as gradually stricter emission regulations and greenhouse gas concerns have led to an ever-increasing effort to develop alternative fuel sources, with particular emphasis on biofuels that possess the added benefit of being renewable. In this regard, and particularly for the transport sector, biodiesel has emerged as a very promising solution.  相似文献   

16.
In this study, waste tyre was pyrolyzed at different conditions such as temperature, heating rate and inert purging gas (N2) flow rate. Pyrolysis parameters were optimized. Optimum parameters were determined. The main objective of this study was to investigate combustion, performance and emissions of diesel and waste tyre oil fuel blend. Experimental investigation was performed in a single cylinder, direct injection, air cooled diesel engine at maximum engine torque speed of 2200 rpm and four different engine load including 3.75, 7.5, 11.25 and 15 Nm. The effects of waste tyre oil on combustion characteristics such as cylinder pressure, heat release rate, ignition delay (ID), combustion duration, engine performance were investigated. In-cylinder pressure and heat release rate increased with waste tyre oil fuel blend (W10) with the increase of engine load. In addition, ID was shortened with the increase of engine load for test fuels but it increased with the addition of waste tyre oil. Lower imep values were obtained because of the lower calorific value of waste tyre oil fuels. Maximum thermal efficiencies were determined as 28.27% and %25.12 with diesel and W10 respectively at 11.25 Nm engine load. When test results were examined, it was seen that waste tyre oil highly affected combustion characteristics, performance and emissions.  相似文献   

17.
With the increasing number of light-duty passenger car, a large amount of waste engine oil was produced yearly which has polluted the environment and wasted fossil resources. Extend engine oil drain interval and reduce its effect on engine emission is of great importance. In this paper, a kind of modified-sawdust engine oil filter was developed and the study focus on its effect on the emission characteristics and fuel consumption rate of spark ignite gasoline engine. This modified-sawdust engine oil filter was also compared with common oil filter. The tests were performed in four-cylinder direct injection gasoline engine at six different typical operating conditions. Various tests were proceed including the exhaust emissions measurement of nitrogen oxides (NOx), carbon monoxide (CO) and hydrocarbons (HC) as well as the fuel consumption rate measurement. The effect of engine oil change on engine emission and fuel consumption rate were also studied. Impurity element content of waste oil and kinetic viscosity were measured before and after modified oil filter was used. The results show that relative to common oil filter, the modified-sawdust oil filter has 0.4–2.1%, 3.7–7.5%, 1.6–13.3% decrease for CO, HC, NOx emissions, respectively. In addition, it significantly reduces oil consumption, and the three major emission species (CO, HC and NOx) was also reduced when fresh engine oil was adopted. These results indicate that the use of modified-sawdust oil filter is an effective choice to improve gasoline engine emission and fuel economy.  相似文献   

18.
Renewable energy sources for the gasoline engines alcohols gain importance recently. These renewable energy sources have attracted the attention of researchers as alternative fuel due to their high octane number. In addition, these are also clean energy sources and can be obtained from the biomass alcohols with low carbon like ethanol. In this study, the effect of compression ratio on engine performance and exhaust emissions was examined at stoichiometric air/fuel ratio, full load and minimum advanced timing for the best torque MBT in a single cylinder, four stroke, with variable compression ratio and spark ignition engine.  相似文献   

19.
Recent design trends of automotive petrol engines, brought about by the need to meet exhaust-emissions legislation, are discussed. It is explained why many of the consequent changes have the side effect of seriously increasing fuel consumption. the conventional inlet system is isolated as a major cause of poor combustion, which leads to the presence of much of the pollutants, and to low engine efficiency. A historical survey is included on the events leading to the present-day exhaust-emissions legislation, and the sources of, effects of and conventional methods of control of the major pollutants are discussed. An alternative approach to the reduction of exhaust emissions has recently attracted interest. Mixture preparation as a means of delivering a near-homogeneous mixture to the engine cylinders has the combined effect of reducing exhaust emissions and fuel consumption. A survey of research and recent applications of this method is included. A method of achieving a near-homogeneous mixture which is simple and effective, and which has been developed by the authors, is described. the results of a lengthy programme of tests in both a laboratory situation and in a car ‘on the road’ are presented and discussed. the encouraging conclusion is drawn that this approach (mixture pretreatment and lean mixture) does indeed result in cleaner exhaust gases and reduced petrol consumption.  相似文献   

20.
The call for the use of biofuels which is being made by most governments following international energy policies is presently finding some resistance from car and components manufacturing companies, private users and local administrations. This opposition makes it more difficult to reach the targets of increased shares of use of biofuels in internal combustion engines. One of the reasons for this resistance is a certain lack of knowledge about the effect of biofuels on engine emissions. This paper collects and analyzes the body of work written mainly in scientific journals about diesel engine emissions when using biodiesel fuels as opposed to conventional diesel fuels. Since the basis for comparison is to maintain engine performance, the first section is dedicated to the effect of biodiesel fuel on engine power, fuel consumption and thermal efficiency. The highest consensus lies in an increase in fuel consumption in approximate proportion to the loss of heating value. In the subsequent sections, the engine emissions from biodiesel and diesel fuels are compared, paying special attention to the most concerning emissions: nitric oxides and particulate matter, the latter not only in mass and composition but also in size distributions. In this case the highest consensus was found in the sharp reduction in particulate emissions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号