首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The increasing awareness of the effects of climate change on the environment and the economic pressure on oil supply has focused international attention on reducing CO2 emissions and energy usage across all sectors. In order to meet their Kyoto protocol commitments and in line with European Union policy, the Irish government has introduced a carbon-based tax system for new vehicles purchased from the 1st of July 2008. This new legislation aims to reduce carbon emissions in the transport sector, a sector which is responsible for a significant proportion of both. This paper presents the results of the development, calibration, and application of a car choice model which predicts the changes in CO2 emissions intensity from new vehicle purchases as a result of the changes in vehicle tax policy and fuel price in Ireland. The model also predicts the impact of such changes on tax revenue for the Irish government and the changes in the split between the number of diesel and petrol vehicles purchased. The investigation found that the introduction of these new carbon-based taxes in Ireland will result in a reduction of 3.6–3.8% in CO2 emissions intensity and a reduction in annual tax revenue of €191 M.  相似文献   

2.
Electric vehicles (EVs) are considered alternatives to internal combustion engines due to their energy efficiency and contribution to CO2 mitigation. The adoption of EVs depends on consumer preferences, including cost, social status and driving habits, although it is agreed that current and expected costs play a major role. We use a partial equilibrium model that minimizes total energy system costs to assess whether EVs can be a cost-effective option for the consumers of each EU27 member state up to 2050, focusing on the impact of different vehicle investment costs and CO2 mitigation targets. We found that for an EU-wide greenhouse gas emission reduction cap of 40% and 70% by 2050 vis-à-vis 1990 emissions, battery electric vehicles (BEVs) are cost-effective in the EU only by 2030 and only if their costs are 30% lower than currently expected. At the EU level, vehicle costs and the capability to deliver both short- and long-distance mobility are the main drivers of BEV deployment. Other drivers include each state’s national mobility patterns and the cost-effectiveness of alternative mitigation options, both in the transport sector, such as plug-in hybrid electric vehicles (PHEVs) or biofuels, and in other sectors, such as renewable electricity.  相似文献   

3.
In 2006, energy-related CO2 emissions from transport energy in Ireland were 168% above 1990 levels. Private cars were responsible for approx 45% of transport energy demand in 2006 (excluding fuel tourism). The average annual growth of new cars between 1990 and 2006 was 5.2%. This paper focuses on these new cars entering the private car fleet, in particular the purchasing trend towards larger size cars. This has considerably offset the improvements in the technical efficiency of individual car models. The analysis was carried out on the detailed data of each individual new vehicle entering the fleet in 2000–2006. The average CO2 emissions per kilometre for new petrol cars entering the Irish fleet grew from 166 to 168 g CO2/km from 2000 to 2005 and reduced to 164 in 2006. For diesel cars the average reduced from 166 in 2000 to 161 in 2006. The paper also discusses how a recent change in vehicle registration taxation and annual motor tax had a significant impact purchasing trends by supporting lower emission vehicles. Cars with emissions up to 155 g CO2/km represented 41% of new private cars sold in Ireland in 2007 compared with 84% during the period July–November 2008.  相似文献   

4.
Control of CO2 emissions is a major environmental issue in most countries. The Swedish car market shows remarkably low new Diesel passenger car registrations compared to the average European Union car market. Therefore, a simple way to decrease CO2 emissions from the transport sector in Sweden would be the replacement of gasoline by Diesel passenger cars, which emit less CO2. The combined effects of probable changes in Diesel and gasoline future fuel consumption, new passenger car sales and market segmentation have been evaluated for different Diesel passenger cars penetrations. The results show a benefit in CO2 emissions of about 2.8% with 30% Diesel penetration; if Diesel penetration reaches 50%, the benefit attains 7.5%. Future rises of CO2 emissions caused by higher new passenger car registrations or unfavourable market segmentation could be at least partially counterbalanced by the introduction of more Diesel passenger cars. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

5.
Rapidly-rising oil demand and associated greenhouse gas (GHG) emissions from road vehicles in China, passenger cars in particular, have attracted worldwide attention. As most studies to date were focused on the vehicle operation stage, the present study attempts to evaluate the energy demand and GHG emissions during the vehicle production process, which usually consists of two major stages—material production and vehicle assembly. Energy demand and GHG emissions in the material production stage are estimated using the following data: the mass of the vehicle, the distribution of material used by mass, and energy demand and GHG emissions associated with the production of each material. Energy demand in the vehicle assembly stage is estimated as a linear function of the vehicle mass, while the associated GHG emission is estimated according to the primary energy sources. It is concluded that the primary energy demand, petroleum demand and GHG emissions during the production of a medium-sized passenger car in China are 69,108 MJ, 14,545 MJ and 6575 kg carbon dioxide equivalent (CO2-eq). Primary energy demand, petroleum demand and GHG emissions in China’s passenger car fleets in 2005 would be increased by 22%, 5% and 30%, respectively, if the vehicle production stage were included.  相似文献   

6.
This paper analyses the impact of an energy efficiency program for light vehicles in Brazil on emissions of carbon dioxide (CO2), the main greenhouse gas in the atmosphere. Several energy efficiency programs for light vehicles around the world are reviewed. The cases of Japan and Europe were selected for presentation here given their status as current and future world leaders in the control of passenger vehicle fuel consumption. The launching of the National Climate Change Plan and the pressure on the Brazilian car industry due to the world financial crisis make it a good time for the Brazilian government to implement such a program, and its various benefits are highlighted in this study. Three scenarios are established for Brazil covering the 2000–2030 period: the first with no efficiency goals, the second with the Japanese goals applied with a 10 years delay, and the third, with the Japanese goals applied with no delay. The consequences of a vehicular efficiency program and its middle and long-term effects on the consumption of energy and the CO2 emissions are quantified and discussed. The simulation results indicate that efficiency goals may make an important contribution to reducing vehicular emissions and fuel consumption in Brazil, compared to a baseline scenario.  相似文献   

7.
《Energy Policy》2005,33(12):1499-1507
With the rapid economic growth in China, the Chinese road transport system is becoming one of the largest and most rapidly growing oil consumers in China. This paper attempts to present the current status and forecast the future trends of oil demand and CO2 emissions from the Chinese road transport sector and to explore possible policy measures to contain the explosive growth of Chinese transport oil consumption. A bottom-up model was developed to estimate the historical oil consumption and CO2 emissions from China's road transport sector between 1997 and 2002 and to forecast future trends in oil consumption and CO2 emissions up to 2030. To explore the importance of policy options of containing the dramatic growth in Chinese transport oil demand, three scenarios regarding motor vehicle fuel economy improvements were designed in predicting future oil use and CO2 emissions. We conclude that China's road transportation will gradually become the largest oil consumer in China in the next two decades but that improvements in vehicle fuel economy have potentially large oil-saving benefits. In particular, if no control measures are implemented, the annual oil demand by China's road vehicles will reach 363 million tons by 2030. On the other hand, under the low- and high-fuel economy improvement scenarios, 55 and 85 million tons of oil will be saved in 2030, respectively. The scenario analysis suggests that China needs to implement vehicle fuel economy improvement measures immediately in order to contain the dramatic growth in transport oil consumption. The imminent implementation is required because (1) China is now in a period of very rapid growth in motor vehicle sales; (2) Chinese vehicles currently in the market are relatively inefficient; and (3) the turnover of a fleet of inefficient motor vehicles will take a long time.  相似文献   

8.
This paper examines the impact of national fiscal measures in the EU (EU15) on passenger car sales and the CO2 emissions intensity of the new car fleet over the period 1995–2004. CO2 emissions and energy consumption from road transport have been increasing in the EU and as a result since 1999 the EU has attempted to implement a high profile policy strategy to address this problem at European level. Less prominent is the fact that Member States apply vehicle and fuel taxes, which may also be having an impact on the quantity of passenger cars sold and their CO2 emissions intensity. Diesel vehicle sales have increased appreciably in many countries over the same period and this study makes a first attempt to examine whether Member State fiscal measures have influenced this phenomenon. This work uses a panel dataset to investigate the relationship between national vehicle and fuel taxes on new passenger car sales and the fleet CO2 emissions intensity in EU15 over a 10-year period. Our results show that national vehicle and fuel taxes have had an impact on passenger car sales and fleet CO2 emissions intensity and that different taxes have disparate effects.  相似文献   

9.
In this study, we simulate global CO2 emissions and their reduction potentials in the industrial sector up to the year 2030. Future industrial CO2 emissions depend on changes in both technology and industrial activity. However, earlier bottom-up analyses mainly focused on technology change. In this study, we estimate changes in both technology and industrial activity. We developed a three-part simulation system. The first part is a macro economic model that simulates macro economic indicators, such as GDP and value added by sector. The second part consists of industrial production models that simulate future steel and cement production. The third part is a bottom-up type technology model that estimates future CO2 emissions. Assuming no changes in technology since 2005, we estimate that global CO2 emissions in 2030 increase by 15 GtCO2 from 2005 level. This increase is due to growth in industrial production. Introducing technological reduction options within 100 US$/tCO2 provides a reduction potential of 5.3 GtCO2 compared to the case of no technology changes. As a result, even with large technological reduction potential, global industrial CO2 emissions in 2030 are estimated to be higher as compared to 2005 level because of growth of industrial production.  相似文献   

10.
New electrified vehicle concepts are about to enter the market in Europe. The expected gains in environmental performance for these new vehicle types are associated with higher technology costs. In parallel, the fuel efficiency of internal combustion engine vehicles and hybrids is continuously improved, which in turn advances their environmental performance but also leads to additional technology costs versus today’s vehicles. The present study compares the well-to-wheel CO2 emissions, costs and CO2 abatement costs of generic European cars, including a gasoline vehicle, diesel vehicle, gasoline hybrid, diesel hybrid, plug in hybrid and battery electric vehicle. The predictive comparison is done for the snapshots 2010, 2020 and 2030 under a new energy policy scenario for Europe. The results of the study show clearly that the electrification of vehicles offer significant possibilities to reduce specific CO2 emissions in road transport, when supported by adequate policies to decarbonise the electricity generation. Additional technology costs for electrified vehicle types are an issue in the beginning, but can go down to enable payback periods of less than 5 years and very competitive CO2 abatement costs, provided that market barriers can be overcome through targeted policy support that mainly addresses their initial cost penalty.  相似文献   

11.
This paper identifies trends in new gasoline and diesel passenger car characteristics in the European Union between 1995 and 2009. By 2009 diesels had captured over 55% of the new vehicle market. While the diesel version of a given car model may have as much as 35% lower fuel use/km and 25% lower CO2 emissions than its gasoline equivalent, diesel buyers have chosen increasingly large and more powerful cars than the gasoline market. As a result, new diesels bought in 2009 had only 2% lower average CO2 emissions than new gasoline cars, a smaller advantage than in 1995. A Laspeyres decomposition investigates which factors were important contributors to the observed emission reductions and which factors offset savings in other areas. More than 95% of the reduction in CO2 emissions per km from new vehicles arose because both diesel and gasoline new vehicle emissions/km fell, and only 5% arose because of the shift from gasoline to diesel technology. Increases in vehicle mass and power for both gasoline and diesel absorbed much of the technological efficiency improvements offered by both technologies. We also observe changes in the gasoline and diesel fleets in eight EU countries and find changes in fuel and emissions intensities consistent with the changes in new vehicles reported. While diesel cars continue to be driven far farther than gasoline cars, we attribute only some of this difference to a “rebound effect”. We conclude that while diesel technology has permitted significant fuel savings, the switch from gasoline to diesel in the new vehicle market contributed little itself to the observed reductions in CO2 emissions from new vehicles.  相似文献   

12.
This paper examines the effects of replacing current fuel taxes by a system of taxes that account better for all the different external costs of the different transport modes. One of the important implications of this reform is that current fuel taxes are decreased to a level of 80 euro/ton of CO2 but that the mileage related taxes on car and truck use increase. Using the TREMOVE model for the transport sector of 31 European countries, one finds that the volume of transport will decrease because current taxes on transport are too low compared to overall external costs. Overall CO2 emissions will decrease slightly. Using the MARKAL–TIMES model for the Belgian energy sector, putting all sectors and technologies on equal footing shows that a fuel tax reform makes that it is not cost efficient to require large CO2 emission reductions in the transport sector and that traditional car technologies will continue to dominate the car market in 2020–2030.  相似文献   

13.
The main objective of this research is to analyze the impact of the market share increase of hydrogen based road vehicles in terms of energy consumption and CO2, on today's Portuguese light-duty fleet. Actual yearly values of energy consumption and emissions were estimated using COPERT software: 167112 TJ of fossil fuel energy, 12213 kton of CO2 emission and 141 kton of CO, 20 kton of HC, 46 kton of NOx and 3 kton of PM. These values represent 20–40% of countries total emissions. Additionally to base fleet, three scenarios of introduction of 10–30% fuel cell vehicles including plug-in hybrids configurations were analysed. Considering the scenarios of increasing hydrogen based vehicles penetration, up to 10% life cycle energy consumption reduction can be obtained if hydrogen from centralized natural gas reforming is considered. Full life cycle CO2 emissions can also be reduced up to 20% in these scenarios, while local pollutants reach up to 85% reductions. For the purpose of estimating road vehicle technologies energy consumption and CO2 emissions in a full life cycle perspective, fuel cell, conventional full hybrids and hybrid plug-in technologies were considered with diesel, gasoline, hydrogen and biofuel blends. Energy consumption values were estimated in a real road driving cycle and with ADVISOR software. Materials cradle-to-grave life cycle was estimated using GREET database adapted to Europe electric mix. The main conclusions on CO2 full life cycle analysis is that light-duty vehicles using fuel cell propulsion technology are highly dependent on hydrogen production pathway. The worst scenario for the current Portuguese and European electric mix is hydrogen produced from on-site electrolysis (in the refuelling stations). In this case full life cycle CO2 is 270 g/km against 190 g/km for conventional Diesel vehicle, for a typical 150,000 km useful life.  相似文献   

14.
This study models the CO2 emissions from electric (EV) and plug-in hybrid electric vehicles (PHEV), and compares the results to published values for the CO2 emissions from conventional vehicles based on internal combustion engines (ICE). PHEVs require fewer batteries than EVs which can make them lighter and more efficient than EVs. PHEVs can also operate their onboard ICEs more efficiently than can conventional vehicles. From this, it was theorized that PHEVs may be able to emit less CO2 than both conventional vehicles and EVs given certain power generation mixes of varying CO2 intensities. Amongst the results it was shown that with a highly CO2 intensive power generation mix, such as in China, PHEVs had the potential to be responsible for fewer tank to wheel CO2 emissions over their entire range than both a similar electric and conventional vehicle. The results also showed that unless highly CO2 intensive countries pursue a major decarbonization of their power generation, they will not be able to fully take advantage of the ability of EVs and PHEVs to reduce the CO2 emissions from automotive transport.  相似文献   

15.
Han Hao  Hewu Wang  Ran Yi 《Energy》2011,36(2):1351-1361
As representative for emerging vehicle market, China has one of the fastest growing rates of automobile ownership in the world. The huge and increasing vehicle stock has significantly contributed to the fast growing of China’s energy demand and GHG emissions. It is an important issue to project China’s vehicle ownership, which to a large extent determines China’s oil demand and GHG emissions from road transportation sector in the future. In this study, we established a hybrid model with three sub models to simulate the growth patterns of China’s private passenger vehicles, urban public transport vehicles and economic utility vehicles. By using this model, we projected that China’s vehicle population would reach 184.8, 363.8 and 606.7 million by 2020, 2030 and 2050 respectively. The fast increase of urban private passenger vehicles is the main driving force for vehicle population growth. Population of urban private passenger vehicles would account for 70.1%, 81.1% and 86.1% of total vehicle population in 2020, 2030 and 2050 respectively. It was demonstrated by sensitivity analysis that vehicle population was quite sensitive to household income and vehicle price, implying an effective lever for regulating the growth of vehicle population.  相似文献   

16.
The Association of Southeast Asian Nations (ASEAN), with its ten member countries, has a total population exceeding 600 million. Its energy-related CO2 emissions have been growing and in 2013 amounted to 3.6% of total global emissions. About 40% of ASEAN's energy-related CO2 emissions are currently attributable to electricity production. In view of this high share, we study the CO2 emissions of ASEAN's electricity production sector with a focus on the aggregate emission intensity (ACI) given by the level of CO2 emissions for each unit of electricity produced. Drivers of ACI are analysed for individual countries and spatial analysis is conducted by comparing factors contributing to differences between the ACIs of individual countries and that of the ASEAN average. Arising from these analyses and in light of the current developments, it is concluded that drastic actions need to be taken both at the national and regional levels in order to reduce growth in the region's electricity-related CO2 emissions. Two key policy issues, namely overcoming national circumstances to improve electricity generation mix and improving power generation efficiency, are further discussed.  相似文献   

17.
Exhaust CO2 emitted from passenger cars is one of the major greenhouse effect gases. Several parameters influence the exhaust CO2 emissions of each passenger car: its characteristics (fuel used, vehicle weight, …) and its use (annual mileage, driving conditions, …). CO2 emissions from passenger cars decrease during last years; however, this decrease seems to reach its limits. Several parameters of the EU15 new PCs market, such as new passenger cars registrations, type of fuel used, engine capacity, max. power, max. specific power, segment distribution, vehicle weight and their CO2 emissions on the New European Driving Cycle are analyzed here. The target is to find the real market parameters influencing exhaust CO2 emissions. Because of the many data used and the parameters examined, this first part of the work is focused on the average values of each parameter studied and the values of each country, while the second part is based on the analysis of each PC segment and the third one on the analysis of the major brands presented in the European market.  相似文献   

18.
Transport is the second emitter of CO2 in the European Union, after the energy production sector, with constantly increased trend. European Union proposed the regulation 443/2009 to control the CO2 emissions from new passenger cars. According to that regulation, the average, for each car manufacturer, CO2 emissions of the new passenger cars registered in 2020 in European Union should not exceed the value of 95 g CO2/km on the New European Driving Cycle. In the present work the regulation 443/2009 is analyzed and a critique is addressed to four points. The first point concerns the average upper limit of CO2 emissions of each car manufacturer. The second point concerns the possible derogation for the low volume manufacturers and the third to the penalties for the extra CO2 emissions. The fourth point concerns the value of the proposed average upper limit of CO2 emissions and the possibility to be changed in the future. A change to the above points is proposed. The maximum decrease of CO2 emissions and the principle of equality of citizens are the two principles of our propositions for the CO2 regulations.  相似文献   

19.
The emissions of carbon dioxide (CO2), the largest component of greenhouse gases (GHG) emissions, emitted from heavy trucks is second only to passenger cars in terms of GHG emissions from the transportation sector. Truck-only toll (TOT) lanes have been proposed in several cities as a means of improving truck flows and reducing freeway congestion. This paper describes an analysis that utilized the US EPA's MOBILE6.2 vehicle emissions modeling software to identify freeway locations with large pollutant emissions and estimated the changes in emission associated with TOT lanes. Emissions including hydrocarbon (HC), carbon monoxide (CO), nitrogen oxide (NOx), and CO2 were estimated by multiplying vehicle kilometers traveled by emission factors associated with various vehicle types and average speeds. The CO2 calculation was limited due to lack of sensitivity in the model of speed variation, which is one of the benefits of the implementation of TOT lanes. Mechanical equations of engine horsepower involving the change in vehicle speeds is applied to estimate the change in CO2 fuel consumption and then converted to estimate the change in CO2 emissions. The results show that voluntary and mandatory use of TOT lanes would reduce total CO2 emissions on all freeway lanes by 62% and 60%.  相似文献   

20.
The reduction of CO2 emissions and fuel consumption from road transportation constitutes an important pillar of the European Union strategy for implementing the Kyoto Protocol. The commitment to reduce passenger car average CO2 emissions at 140 g/km in 2008 signed by European car manufacturers and the European Commission is up to now the most important initiative towards limiting CO2 emissions from road transportation and particularly from passenger cars. Until today, annual reports show the manufacturers’ efforts in limiting CO2 emissions is within the intermediate target set by the commitment and these results are incorporated in emissions estimations and scientific studies. This paper analyses the origin of the progress achieved so far in CO2 emissions and attempts an assessment of the commitment using independent experimental emission data. Additionally, the applicability of the commitment-monitoring data into policy and decision-making tools is being examined. The results indicate that a significant part of the reductions achieved so far is due to a market shift towards diesel vehicle sales and that no reduction factors should be applied yet in CO2 emissions estimation models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号