首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 203 毫秒
1.
以聚乙二醇(PEG)为相变物质,聚乙烯醇(PVA)为纤维基体,加入少量丁烷四羧酸(BTCA)作为交联剂,采用干法纺丝制备相变储能纤维,利用原位交联法在纤维拉伸热定形过程中使BTCA与PVA、PEG发生交联,将PEG接枝在PVA上。研究了BTCA、PEG合适的添加量以及最佳热定形温度对PEG保留率的影响,并通过差示扫描量热法、扫描电镜对纤维的热性能和形貌进行了分析。结果表明:当PEG添加量为30%(占PVA质量的百分数)、BTCA添加量为5%(占PVA质量的百分数)时,纤维充分交联,200℃下热处理10 min所得纤维PEG的保留率98%;制得的纤维的相变热焓可达34 J/g,拉伸强度可达3.26 cN/dtex;在升降温循环400次后仍具有良好的储能性。  相似文献   

2.
复合纺丝法制备PEG/PVA相变储能初生纤维   总被引:1,自引:1,他引:0  
采用不同相对分子质量的聚乙二醇(PEG)与聚乙烯醇(PVA)进行湿法复合纺丝制备PEG/PVA相变储能初生纤维,对PEG与PVA溶液的相容性、PEG的凝固性能、PEG/PVA纤维的相变潜热及纤维形貌进行了研究。结果表明:PEG 2000与PVA复合纺丝得到的相变储能初生纤维具有较高的相变潜热,PEG 2000与PVA的质量比小于3:10时,PEG 2000在纺丝过程中流失量较小,纤维截面随着PEG 2000含量的增加而由肾形向圆形变化。  相似文献   

3.
在胶原蛋白(Col)与聚乙烯醇(PVA)共混纺丝原液中,加入丁烷四羧酸(BTCA)作为交联剂,经湿法纺丝得到初生纤维,经热拉伸和热定型、缩醛化处理得到Col/PVA复合纤维;分析了Col/PVA复合纤维的结构和性能。结果表明:BTCA可以使纤维内部形成交联结构,提升纤维内部Col的稳定性,红外光谱分析表明,BTCA与PVA上的羟基反应生成了酯键;经扫描电子显微镜观察发现BTCA交联处理后复合纤维内部致密,孔洞和缺陷少;差示扫描量热法分析表明BTCA的交联作用会抑制纤维内PVA的结晶,使结晶度有所下降;BTCA添加质量分数为3%的复合纤维的断裂强度、断裂伸长率、Col保留率分别为4.94 cN/dtex,12.56%,91.09%,水中软化点为106℃,具有优良的综合性能。  相似文献   

4.
聚丙烯腈/聚乙烯醇/石蜡储能纤维的制备及表征   总被引:2,自引:2,他引:2  
以聚丙烯腈(PAN)和聚乙烯醇(PVA)共混作为纤维材料,石蜡为相变材料,通过湿法复合纺丝制得相变储能纤维;采用红外光谱(IR)、广角X射线衍射仪(WAXD)、差示扫描量热仪(DSC)表征了纤维的结构以及相变储能性能;分析了纤维的力学性能及相变潜热与纤维中聚乙烯醇含量之间的关系。结果表明:PVA的加入对储能纤维的断裂伸长率和断裂强度影响不大;随着PVA含量的增加,纤维的初生模量由49.1cN/dtex提高到100.5cN/dtex,热焓呈现先增加后减小的趋势,储能纤维中各组分化学结构基本稳定,在水中软化点由93℃增加到110℃。  相似文献   

5.
采用湿法纺丝法制备了聚乙烯醇/磺酸化多壁碳纳米管(PVA/s-MWCNTs)复合纤维,并对复合纤维的结构与性能进行了表征。结果表明:当纤维中s-MWCNTs质量分数为5%时,s-MWCNTs均匀地分散在PVA基体中,当s-MWCNTs质量分数增加到8%时,纤维中出现少许s-MWCNTs团聚体;随着s-MWCNTs含量的增加,复合纤维的结晶度逐渐降低,PVA微晶取向度先增大后减小,纤维的模量和断裂强度均先增大后减小,电导率逐渐增加;当s-MWCNTs质量分数为5%时,纤维力学性能较好,其断裂强度和模量分别为0.83GPa和15 GPa,而s-MWCNTs质量分数为8%时,纤维电学性能较好,其电导率为0.65 S/m。  相似文献   

6.
以聚乙烯醇(PVA)为原料、去离子水为溶剂,通过静电纺丝制备PVA纳米纤维膜,利用正交实验探讨静电纺丝过程中纺丝液PVA浓度、纺丝距离、纺丝电压和注射速度对PVA纳米纤维膜形貌及纤维直径的影响,得出制备纤维膜的较佳工艺条件,并分析了纺丝液PVA浓度对纤维膜的力学性能和亲水性能的影响。结果表明:随着纺丝液PVA浓度的增加,PVA纤维的直径逐步变小,直径分布变窄;当纺丝液PVA质量分数为7%、纺丝电压为14 kV、纺丝距离为14 cm、注射速度为0.5 mL/h时,纤维膜的纤维直径最小,为203 nm;正交实验中PVA浓度、纺丝电压、纺丝距离、注射速度4个因素的极差值分别为87.00,49.67,18.33,11.67;纺丝液PVA质量分数从5%增加到7%,纤维膜的断裂强度从2.21 MPa提高至2.81 MPa,断裂伸长率从31.63%提高至56.39%,水接触角从37.7°提高至48.7°。  相似文献   

7.
以聚乙二醇丙烯酸酯为相容剂,将聚N-羟甲基丙烯酰胺/聚乙二醇互穿网络聚合物(简称IPN)与聚丙烯(PP)共混并纺丝,制备新型PP/IPN相变纤维。测试了共混物的流变性能,共混纤维的力学性能、热性能及回潮率。结果表明:共混物为切力变稀流体,共混纤维断裂强度随IPN含量的增加先增大后下降,相变焓随IPN含量的增大而提高,共混纤维的吸湿能力较纯PP高。当w(IPN)为20%时,断裂强度保持在3 cN/dtex以上,熔融相变焓达17.10 J/g,回潮率达0.68%。  相似文献   

8.
采用静电纺丝方法制备了聚乙烯醇(PVA)纳米纤维,探讨了工艺参数对纳米纤维形貌的影响,并对PVA纳米纤维膜进行热处理,研究了热处理时间与温度对纳米纤维膜力学性能的影响。研究表明:PVA质量分数在6%~10%区间内变化时,可得到直径分布较为均匀的纳米纤维;在其它条件相同时,随纺丝电压的升高,PVA纳米纤维的不匀增大;接收距离的改变对PVA纳米纤维的直径变化影响不大;随PVA质量分数的增加,纳米纤维膜的断裂强度和断裂伸长率逐渐增大;在热处理时间相同时,PVA纳米纤维膜的断裂强度随温度的升高而增大;处理温度相同时,随处理时间的延长,PVA纳米纤维膜的断裂强度变化不大。  相似文献   

9.
将维生素(VC)溶解在质量分数8%的聚乙烯醇(PVA)水溶液中,通过静电纺丝制得PVA/VC共混纳米纤维。分析了VC含量对溶液性能及静电纺丝速度的影响;测试了纤维的形貌结构及力学性能。结果表明:PVA/VC共混溶液属于切力变稀流体;当PVA/VC质量比为100/10或100/20时,共混溶液的电导率和静电纺丝速度较纯PVA溶液明显提高,制得的纳米纤维表面光滑,粗细均匀;与纯PVA纳米纤维比较,其平均直径和拉伸强度降低,断裂伸长率提高。  相似文献   

10.
刘玲  周彬  周红涛 《塑料工业》2022,(2):174-178
将质量分数为10%的聚乙烯醇(PVA)水溶液与聚3,4-乙烯二氧噻吩/聚苯乙烯磺酸(PEDOT/PSS)水分散液共混,经过恒温高速搅拌,制备出均匀的PVA/PEDOT/PSS共混纺丝液,随后通过湿法纺丝制备出PVA/PEDOT/PSS纤维。借助旋转式流变仪探究不同PEDOT/PSS质量分数的纺丝液在纺丝温度的差异下,纺丝液的流变特性与可纺性的关系。采用高阻计和电子单纤维强力仪对成品纤维的导电性能和力学性能进行测试表征。使用扫描电子显微镜对不同PEDOT/PSS质量分数的纤维表面形貌进行表征。结果表明,PEDOT/PSS质量分数在0%~9.09%的质量分数范围内,随着纺丝液中PEDOT/PSS质量分数的增加,纺丝液黏度增大,PVA/PEDOT/PSS纺丝液可纺性呈先提高后降低的趋势。在30~90℃的范围内,随着纺丝体系温度的提高,PVA/PEDOT/PSS纺丝液可纺性呈先升高后降低的趋势;随着PEDOT/PSS质量分数的提高,PVA/PEDOT/PSS纤维的电导率逐渐升高,拉伸强度逐渐增加,拉伸断裂伸长率逐渐降低。  相似文献   

11.
高含量胶原蛋白/PVA复合纤维的结构与性能   总被引:1,自引:1,他引:0  
在胶原蛋白与聚乙烯醇(PVA)共混溶液中,加入连接剂三氯化铝和戊二醛,经湿法纺丝、热拉伸定型和后交联处理制得胶原蛋白质量分数为45.17%的胶原蛋白/PVA复合纤维,研究了复合纤维的结构与性能。结果表明:胶原蛋白/PVA复合纤维横截面呈圆形,具有皮芯结构,断裂强度和断裂伸长率分别为2.14cN/dtex和46.32%,结晶度为41.1%,水中软化点和回潮率分别为101℃和11.50%。  相似文献   

12.
以丁烷四羧酸(BTCA)为交联剂对胶原蛋白(Coll)/聚乙烯醇(PVA)复合体系进行化学交联处理;利用红外光谱分析了交联前后体系的化学变化;根据常见动力学机理函数,结合凝胶含量(α)研究复合体系的交联动力学。结果表明:BTCA对Coll/PVA体系有明显的交联作用,交联反应主要以酯化反应和酰胺化反应为主;BTCA/PVA和BTCA/Coll的表观凝胶反应活化能(E)分别为100.29,77.42 kJ/mol,表明BTCA较易与Coll反应;BTCA/Coll/PVA复合体系的最佳动力学函数G(α)为[-ln(1-α)]2/5,E为40.88 kJ/mol,比Coll/PVA复合体系的E(86.99 kJ/mol)明显减小,说明BTCA的加入降低了体系的E,有利于促进交联反应,可提高蛋白存留率。  相似文献   

13.
采用质量分数3%乙酸水溶液作为高醇解度聚乙烯醇(PVA)的溶剂,研究了PVA稀乙酸溶液的性质及其静电纺丝工艺。结果表明:加入质量分数3%乙酸,PVA溶液粘度下降,表面张力及电导率提高;纺丝液浓度对PVA稀乙酸溶液的静电纺丝性能影响最大;当PVA稀乙酸溶液质量分数为8%~13%,固化距离15mm,纺丝电压14~18kV时,可制得形态良好的PVA超细纤维无纺毡。  相似文献   

14.
丙烯酸接枝改性壳聚糖纤维的制备及性能   总被引:2,自引:0,他引:2  
在引发剂过硫酸铵(APS)的作用下,采用丙烯酸(AA)接枝改性壳聚糖(CS),制备出CS-AA接枝共聚物,经湿法纺丝将其纺制成纤维,再用戊二醛对纤维进行一定程度的交联,可得到较好力学性能的改性CS纤维。结果表明:CS质量分数(相对AA)为14.3%,APS(相对AA)的摩尔分数为1.0%,反应温度65℃,反应时间6 h,凝固浴中无水乙醇和质量分数为10%氢氧化钠水溶液的体积比为50/50。在此条件下制得的纤维的断裂强度为0.55 cN/dtex,断裂伸长率为367%,经交联处理后纤维的断裂强度达2.03 cN/dtex。  相似文献   

15.
Using Na+ form of perfluorosulfonic acid (PFSA) and poly(vinyl alcohol) (PVA) as coating materials, polysulfone (PSf) hollow fiber ultrafiltration membrane as a substrate membrane, PFSA‐PVA/PSf hollow fiber composite membrane was fabricated by dip‐coating method. The membranes were post‐treated by two methods of heat treatment and by both heat treatment and chemical crosslinking. Maleic anhydride (MAC) aqueous solution was used as chemical crosslinking agent using 0.5 wt % H2SO4 as a catalyst. PFSA‐PVA/PSf hollow fiber composite membranes were used for the pervaporation (PV) separation of isopropanol (IPA)/H2O mixture. Based on the experimental results, PFSA‐PVA/PSf hollow fiber composite membrane is suitable for the PV dehydration of IPA/H2O solution. With the increment of heat treatment temperature, the separation factor increased and the total permeation flux decreased. The addition of PVA in PFSA‐PVA coating solution was favorable for the improvement of the separation factor of the composite membranes post‐treated by heat treatment. Compared with the membranes by heat treatment, the separation factors of the composite membranes post‐treated by both heat treatment and chemical crosslinking were evidently improved and reached to be about 520 for 95/5 IPA/water. The membranes post‐treated by heat had some cracks which disappeared after chemical crosslinking for a proper time. Effects of feed temperature on PV performance had some differences for the membranes with different composition of coating layer. The composite membranes with the higher mass fraction of PVA in PFSA‐PVA coating solution were more sensitive to temperature. It was concluded that the proper preparation conditions for the composite membranes were as follows: firstly, heated at 160°C for 1 h, then chemical crosslinking at 40°C for 3 h in 4% MAC aqueous solution. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

16.
在胶原蛋白与聚乙烯醇(PVA)复合后的溶液中加入少量质量分数为0.05%~0.25%的碳纳米管,通过湿法纺丝制得PVA/胶原蛋白/碳纳米管复合纤维,研究了复合纤维的结构和性能。结果表明:碳纳米管与PVA和胶原蛋白有较好的相容性,在复合纤维中分散比较均匀。添加质量分数为0.25%碳纳米管时,复合纤维结晶度提高了37.62%,水中软化点提高了5℃,回潮率从11.50%下降到10.83%;加入质量分数为0.05%的碳纳米管时,复合纤维的断裂强度提高57.07%。  相似文献   

17.
采用不同羟甲基化度的三聚氰胺甲醛(MF)树脂与聚乙烯醇(PVA)溶液共混湿法纺丝,制备MF/PVA共混纤维;借助扫描电子显微镜研究了MF与PVA的相容性,凯氏定氮法分析了共混纤维在纺丝过程中氮流失率,并对纤维的力学性能、阻燃性能、耐热水性能及热稳定性进行了测试表征。结果表明:改变甲醛与三聚氰胺的比例可以获得不同羟甲基化度的MF树脂;随着MF树脂羟甲基化度的提高,共混纤维的氮流失率逐渐降低;当MF树脂的羟甲基化度增大至1.15时,共混纤维氮流失率为0.20%;高羟甲基化度MF制成的共混纤维经220℃处理后,断裂强度和断裂伸长率分别为3.19 cN/dtex和25.1%,极限氧指数为33.2%,水中软化点为86℃,在氮气氛围下的初始热分解温度为258.8℃,600℃时残炭量为24.63%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号