首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Blends of poly(ethylene terephthalate-Co-p-oxybenzoate), PET/PHB, with poly(ethylene terephthalate), PET, have been studied in the form of as-spun and drawn fibers. DSC melting and crystallization results show that the PET is compatible with LCP and the crystallization of PET decreases by the addition of LCP in the matrix. Upon heating above the crystal melting temperature of PET, the blend shows good dispersion of LCP in the PET matrix. Wide angle X-ray diffraction of drawn blended fibers show the possible formation of LCP oriented domains. The mechanical properties of drawn fiber up to 10 wt% LCP composition exhibit significant improvement in tensile modulus and tensile strength with values of 17.7 GPa and 1.0 GPa, respectively. Values of modulus are compared with prediction from composite theory, assuming the blend system as nematic domains of LCP. dispersed in PET matrix.  相似文献   

2.
3.
This paper describes the effects of composition and processing conditions on the efficiency of the compatibilizer prepared from a thermotropic liquid crystalline polymer (TLCP) and the sodium salt of a poly(ethylene‐cor‐acrylic acid) ionomer (EAA‐Na) in TLCP/low‐density polyethylene (LDPE) blends and TLCP/high‐density polyethylene (HDPE) blends. The TLCP‐ionomer graft copolymer formed by a melt acidolysis reaction effectively reduced the interfacial tension between TLCP and polyethylene, which improved impact strength and toughness of the compatibilized blends. Higher processing temperatures for the reactive extrusion produced a more efficient compatibilizer, presumably due to increased graft‐copolymer formation, but the reaction temperature had little effect on the impact strength of compatibilized blends for temperatures above 300°C. The addition of the compatibilizer to TLCP/LDPE blends significantly increased the melt viscosity due to increased interfacial adhesion. The TLCP/EAA‐Na ratio used to prepare the compatibilizer had little effect on the performance of the compatibilizer. Although the compatibilizer can be prepared in situ by blending and extruding a ternary blend of TLCP/EAA‐Na/polyethylene, pre‐reacting the compatibilizer resulted in blends with improved toughness and elongation.  相似文献   

4.
In this paper the effect of the inclusion of two different thermotropic liquid crystalline polymers, namely Rodrun 3000 and Vectra A950, in a PP matrix is analyzed with particular attention to the gas transport and mechanical properties of the extruded blend films. The experiments, conducted on PP/Rodrun 3000 and PP/Vectra A950 films, have shown that the presence of TLCPs, also at low percentages, modify the properties of the thermoplastic matrix in a manner depending on the degree of compability and interfacial adhesion between the two components of the blends. Moreover, the effect of a maleic anhydride grafted PP (MAP), used as compatibilizing agent, on the properties and morphology of the PP/Rodrun 3000 system was examined. It was found that the addition of the MAP determines an increase in the barrier properties and in toughness of the films compared to those without MAP.  相似文献   

5.
The morphology, rheology, and mechanical properties of blends of polysulfone (PSF) with up to 65% of a wholly aromatic liquid crystalline polymer (LCP) were investigated. In injection molded specimens a skin-core morphology was observed with the LCP minor phase oriented in the skin and globular in the core. Scanning electron microscopy of fractured surfaces showed sharp phase boundaries, suggesting low interfacial adhesion. The neat PSF and blends with low amounts of LCP exhibited a low shear Newtonian plateau not observed in the blends with high LCP levels. The addition of LCP to PSF resulted in an increase in stiffness, a small increase in tensile strength, and a significant improvement in processability.  相似文献   

6.
The dynamic crystallization and subsequent melting behaviour of poly(aryl ether ether ketone), PEEK, and its blends with a thermotropic liquid crystalline polymer, Vectra®, have been studied using differential scanning calorimetry, optical microscopy and wide‐angle and small‐angle X‐ray diffraction (WAXS and SAXS) techniques in a wide compositional range. Differences in crystallization rates and crystallinities were related to the structural and morphological characteristics of the blends measured by simultaneous real‐time WAXS and SAXS experiments using synchrotron radiation and optical microscopy. The crystallization process of PEEK in the blends takes place in the presence of the nematic phase of Vectra and leads to the formation of two different crystalline families. The addition of Vectra reduces the crystallization rate of PEEK, depending on composition, and more perfect crystals are formed. An increase in the long period of PEEK during heating was generally observed in the blends at all cooling rates. Copyright © 2003 Society of Chemical Industry  相似文献   

7.
Blends of thermotropic liquid crystalline polymer (LCP) and polyphenylene sulfide (PPS) were studied over the entire composition range using Rheometrics Stress Rheometer, capillary rheometer, and differential scanning calorimeter. There is no molecular scale mixing or chemical reaction between the components, as evidenced by melting and crystallization points in the PPS phase. From the strain scaling transients test at low‐rate, LCP and the blends require approximately 60 strain units to obtain steady stale shearing results. The large recoveries in the strain recovery test, magnitude 3 to 3.3 strain unit, are likely the results of texture present in LCPs. With increasing PPS content in LCP/PPS blends, the total recovery declines. Scaling of the transient strain rate remains, but the magnitude of the transients is reduced. At low‐rate, when the LCP is added to the PPS, the pure melts have similar visosity: 500 Pa · s for LCP and 600 Pa · s for PPS, but the viscosity of the blends goes through a maximum with concentration that is nearly three times the viscosity of the individual melts. At high‐rate, a significant depression of the viscosity is observed in the PPS‐rich compositions and this may be due to the fibrous structure of the LCP at high shear rates.  相似文献   

8.
Summary Structure-property relationships of blends of a thermotropic polyester-type main-chain LCP and polybutylene terephthalate (PBT) were investigated. LCP was melt blended with three different PBTs and the blends were processed by injection moulding or extrusion. Mechanical and thermal properties of the blends were determined and the blend structure was characterized by scanning electron microscopy (SEM). LCP acted as mechanical reinforcement for PBT and improved also its dimensional and thermal stability. The stiffness of PBT increased with increasing LCP content, but at the same time the blends became more brittle. In extrusion the orientation of LCP phases could be further enhanced by additional drawing, which led to significant improvements in strength and stiffness at LCP contents of 20–30 wt.-%.  相似文献   

9.
Thermotropic liquid crystalline polymers, LCPs, are frequently blended with thermoplastics to achieve an in situ composite structure. Significant mechanical reinforcement is obtained for the matrix polymer in the direction of the LCP fibers, but the transversal properties are often inferior because of the incompatibility of the components. Blends of LCP with polypropylene, and with three related matrix polymers, and PP/LCP blends with added potential compatibilizers were prepared and studied for their mechanical properties and morphology. A notable improvement in impact strength was achieved when a small amount of ethylene-based terpolymer was added as compatibilizer. © 1993 John Wiley & Sons, Inc.  相似文献   

10.
Several polymer blend compositions of LaRC-TPI 1500 and New TPI 450 (Mitsui Toatsu) with Xydar SRT 900 LCP (Amoco Performance Products) were extrusion processed. In addition to binary blends containing one TPI with an LCP, ternary blends consisting of an alloy containing both TPIs as the matrix were also processed. By varying the ratio of the polyimides in the matrix, the blends' thermal behavior could be tailored. This paper addresses both processing issues and film properties of these blends. Rheological and thermal studies were conducted on both blends made in a torque rheometer and on biaxially oriented film produced with a counter-rotating annular die. These biaxial blend films were further characterized by measuring tensile and electrical properties. For 70/30 New TPI/Xydar equal biaxial films of 50 μm thickness, a modulus of 3.8 GPa and a stress at break of 100 MPa were measured. For near uniaxial blend films (±3°) a modulus of 14.5 GPa and a strength of 220 MPa in the machine direction (MD) were measured. The transverse direction (TD) properties were still higher than the neat New TPI. The electrical properties of these blends were outstanding. The dissipation factor was typically less than 0.01 for most blend compositions. Similarly, the dielectric constant was typically less than 3 up to temperatures as high as 300°C.  相似文献   

11.
The thermal degradation behavior of blends of poly(aryl ether ether ketone), PEEK, with a thermotropic liquid crystalline polymer (TLCP), Vectra®, were investigated in an oxidative atmosphere, using thermogravimetric analysis under dynamic conditions. The theoretical weight loss curves of the blends were compared with the experimental curves in order to explain the effect of blending on the thermal stability of the pure polymers. The thermo‐oxidative degradation of PEEK/Vectra® blends of different compositions takes place in various steps and the characteristic degradation temperatures and the kinetic parameters such as activation energy are strongly influenced by blending. Polymer blends based on this TLCP polymer had not been previously studied from kinetic viewpoint. POLYM. ENG. SCI. 46:129–138, 2006. © 2005 Society of Plastics Engineers  相似文献   

12.
Phase behavior, thermal, rheological and mechanical properties plus morphology have been studied for a binary polymer blend. The blend is phenolphthalein polyethersulfone (PES-C) with a thermotropic liquid crystalline polymer (LCP), a condensation copolymer of p-hydroxybenzoic acid with ethylene terephthalate (PHB-PET). It was found that these two polymers from optically isotropic and homogeneous blends by means of a solvent casting method. The homogeneous blends undergo phase separation during heat treatment. However, melt mixed PES-C/PHB-PET blends were heterogeneous based upon DSC and DMA analysis and SEM examination. Addition of LCP in PES-C resulted in a marked reduction of melt viscosity and thus improved processability. Compared to pure PES-C, the charpy impact strength of the blend containing 2.5% LCP increased 2.5 times. Synergistic effects were also observed for the mechanical properties of blends containing < 10% LCP. Particulates, ribbons, and fibrils were found to be the typical morphological units of PHB-PET in the PES-C matrix, which depended upon the concentration of LCP and the processing conditions.  相似文献   

13.
The properties and microstructure of a thermotropic liquid crystalline polymer (TLCP, Vectran V400P) were investigated in the presence of carbon nanofibers (CNF). The electrical conductivity of TLCP increased with an addition of CNFs. The thermal analysis of pure TLCP and its composites revealed that a glass transition at ~ 110°C did not change significantly. However, a decrease of tensile modulus and strength was observed with the addition of CNFs. WAXD studies showed a decrease of Herman's orientation parameter, indicating reduction of anisotropy of TLCP. Further, the disruption of molecular orientation of TLCPs was inferred by SEM and TEM analysis. SEM micrographs revealed a fibrillar structure for pure TLCPs at a macro‐scale (2–5 μm). However, this structure was not observed in composites at the same scale even though micro‐size fibrils (0.05 μm) were found with the addition of CNFs. TEM micrographs displayed banded structures of pure TLCPs, but these structures were not significant in the vicinity of CNFs. These observations confirmed that a decrease of molecular alignment and disruption of fibrillar structure of TLCP, in the presence of nanofibers, are attributed to a significant decrease in tensile modulus and strength. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

14.
Liquid crystalline polymer (LCP) blends with a thermotropic LCP dispersed in the form of microspheres is studied to show the role of LCP spheres. Polycarbonate (PC), p‐hydroxybenzoic acid–poly(ethylene terephthalate) copolyester, and random styrene–maleic anhydride copolymer are used as the matrix, the dispersed phase, and the compatibilizer, respectively. A scanning electron microscopy observation shows the formation of LCP spheres with improved interfacial adhesion in the injection‐molded samples via compatibilization. The mechanical tests show increased modulus, elongation at break, and fracture‐absorbed energy of blends of LCP spheres‐dispersed PC. This shows an optimistic potential for the dispersed LCP phase, in spite of its morphology in the form of fibrils for reinforcing the matrix or in the form of microspheres for toughening the matrix. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 1493–1499, 2003  相似文献   

15.
This paper is concerned with properties and processing performance of two thermotropic liquid crystalline polymers (TLCPs) produced by DuPont (HX6000 and HX8000) with widely varying melting points and blends of these two TLCPs. This work was carried out in an effort to develop a TLCP suitable for generating poly(ethylene terephthalate) (PET) composites in which the melting point of the TLCP was higher than the processing temperature of PET. Strands of the neat TLCPs and a 50/50 wt % TLCP–TLCP blend were spun and tested for their tensile properties. It was determined that the moduli of the HX8000, HX6000, and HX6000–HX8000 blend strands were 47.1, 70, and 38.5 GPa, respectfully. Monofilaments of PET–HX6000–HX8000 (50/25/25 wt %) were spun with the use of a novel dual extruder process. The strands had moduli as high as 28 GPa, exceeding predictions made using the rule of mixtures and tensile strengths around 275 MPa. The strands were then uniaxially compression molded at 270°C. It was found that after compression molding, the modulus dropped from 28 GPa to roughly 12 GPa due to the loss of molecular orientation in the TLCP phase. However, this represents an improvement over the use of HX8000. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 2209–2218, 1999  相似文献   

16.
A thermotropic liquid crystalline polymer (LCP), when added to polystyrene (PS), can function as both a processing aid and a reinforcing filler. Thermal, rheological, and mechanical properties of the pure components and blends containing up to 10 percent LCP are reported. The LCP used is immiscible with PS, and when an extensional component of flow is present during processing, the LCP forms an elongated fibrous phase oriented in the flow direction. This oriented phase lubricates the melt, substantially lowering the viscosity. When the processed blend is cooled, the dispersed fibrous LCP phase is preserved in the solidified material. The LCP microfibers behave like short reinforcing fibers to improve the mechanical properties of the blend; for example, at an LCP concentration of 4.5 percent, the modulus is increased about 40 percent vs. pure PS.  相似文献   

17.
18.
The isothermal and dynamic crystallization behaviors of polyethylene terephthalate (PET) blended with three types of liquid crystal polymers, i.e., PHB60–PET40, HBA73–HNA27, [(PHB60–PET40)–(HBA73–HNA27) 50 : 50], have been studied using differential scanning calorimetry (DSC). The kinetics were calculated using the slope of the crystallization versus time plot, the time for 50% reduced crystallinity, the time to attain maximum rate of crystallization, and the Avrami equation. All the liquid crystalline polymer reinforcements with 10 wt % added accelerated the rate of crystallization of PET; however, the order of the acceleration effect among the liquid crystalline polymers could not be defined from the isothermal crystallization kinetics. The order of the effect for liquid crystalline polymer on the crystallization of PET is as follows: (PHB60–PET40)–(HBA73–HNA27) (50 : 50); HBA73–HNA27; PHB60–PET40: This order forms the dynamic scan of the DSC measurements. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 67:1383–1392, 1998  相似文献   

19.
Preparation, morphology, and mechanical properties were studied of blends of a thermotropic liquid crystalline polymer (TLCP) with two different grades of polypropylene, one with and one without overlap in processing temperatures, using two different blending methods. The highly viscous grade (PP-1) was of sufficient thermal stability to be blended with the TLCP (Vectra A950) in a single-screw extruder with an Egan mixing section on the screw. The low viscous grade (PP-2) could not be processed at the same temperature as the TLCP because of degradation. Its blends were, therefore, prepared by a special coextrusion technique, i.e. feeding the two components from two separate extruders to a Ross static mixer. In both methods drawing of the extrudate is necessary to obtain satisfactory mechanical properties. The PP-1/TLCP blends had to be extruded twice in order to obtain proper mixing. The morphology of these blends ranges from a pronounced skin-core morphology at low extrudate draw ratio (DR = 3) to a high-aspect ratio fiber/matrix morphology at high draw ratio (DR = 15). The morphology of the PP-2/TLCP blends was always a high-aspect ratio fiber/matrix morphology even at low draw ratios. The TLCP fibers were generated in this coextrusion process under conditions where the viscosity of the dispersed phase was higher than the viscosity of the matrix. Breakup experiments demonstrate that fibers of a thickness of approximately 1 μm disintegrate into droplets within a few seconds at temperatures above the melting point of the TLCP. This is probably the cause of the skin-core morphology obtained with single-screw extrusion. Tensile modulus and strength of all blends increase with extrudate draw ratio. The deformation of the TLCP phase in the drawn blends is less than affine, probably because of slip between the phases. The moduli of the PP-1/TLCP blends as a function of the draw ratio can be described well by a modified Halpin-Tsai equation taking into account both changes in aspect ratio and molecular orientation of the TLCP fibers. The level of reinforcement in the PP-2/TLCP blends is lower than expected, probably because of the low temperature of drawing. This demonstrates a limitation of the coextrusion process: blending at temperatures that are too low reduces mechanical properties.  相似文献   

20.
Summary The surface modification of low-density polyethylene(PE) by liquid phase photograft polymerization with acrylic acid(AA), acrylamide(AM) and glycidyl methacrylate(GMA) was described. The grafting of AA and AM was proved and characterized by electron spectroscopy for chemical analysis(ESCA). It was found that fully hydrophilic surface can be obtained in very short irradiation time. With ESCA and attenuated total reflection infrared spectroscopy(ATR-IR), it can be confirmed that bifunctional monomer GMA was grafted onto the PE film surface. Through further reaction with GMA grafted film, heparin and protamine were immobilized onto the grafted film surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号