首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Capture of carbon dioxide from distributed sources is often neglected as a viable solution to the global problem of CO2 emissions management. Small scale power plants, including those applicable to the transportation sector, can be designed to capture their CO2 exhaust stream, provided it is not heavily diluted with air. Liquefaction of carbon dioxide allows the captured CO2 to be stored densely, with a minimal energetic penalty and space requirement, until it can be permanently sequestered. In this short-term solution, the energetic penalty for CO2 capture can be further offset by exploiting novel energy conversion processes involving regeneration of the reaction product stream – a simple strategy that is not exploited in conventional systems. More importantly, in the long-term, as the renewable energy infrastructure is built up, the collected CO2 can be recycled into synthetic carbon-based liquid fuels which act as energy carriers in the sustainable carbon economy.  相似文献   

2.
Electric Power Research Institute (EPRI) and the US Department of Energy (DOE) have been funding a number of case studies under the initiative entitled “Economic Development through Biomass Systems Integration”, with the objective of investigate the feasibility of integrated biomass energy systems, utilizing a dedicated feedstock supply system (DFSS) for energy production. This paper deals with the full fuel cycle for four of these case studies, which have been examined with regard to the emissions of carbon dioxide, CO2. Although the conversion of biomass to electricity in itself does not emit more CO2 than is captured by the biomass through photosynthesis, there will be some CO2 emissions from the DFSS. External energy is required for the production and transportation of the biomass feedstock, and this energy is mainly based on fossil fuels. By using this input energy, CO2 and other greenhouse gases are emitted. However, by utilizing biomass with fossil fuels as external input fuels, we would get about 10–15 times more electric energy per unit fossil fuel, compared with a 100% coal power system. By introducing a DFSS on former farmland the amount of energy spent for production of crops can be reduced, the amount of fertilizers can be decreased, the soil can be improved and a significant amount of energy will be produced compared with an ordinary farm crop. Compared with traditional coal-based electricity production, the CO2 emissions are in most cases reduced significantly by as much as 95%. The important conclusion is the great potential for reducing greenhouse gas emissions through the offset of coal by biomass.  相似文献   

3.
In this paper, the potential to reduce CO2 emissions from dimethyl carbonate production by switching from the traditional phosgene-based production to a urea-based CO2 utilization process is assessed. The total CO2 emission for each process is estimated, including emissions related to the carbon content of the products, energy consumption in the production process, and energy consumption in the production processes of the required reactants. Implementation of the CO2 utilization process probably will reduce total CO2 emissions. However, in order to achieve substantially reduced CO2 emissions, serious consideration must be given to the optimization and design of the CO2 utilization process. Furthermore, the fuel-mix employed is one of the factors that influences the total CO2 emission the most.  相似文献   

4.
The integration of hydrogen in national energy systems is illustrated in four extreme scenarios, reflecting four technological mainstreams (energy conservation, renewables, nuclear and CO2 removal) to reduce C emissions. Hydrogen is cost-effective in all scenarios with higher CO2 reduction targets. Hydrogen would be produced from fossil fuels, or from water and electricity or heat, depending upon the scenario. Hydrogen would be used in the residential and commercial sectors and for transport vehicles, industry, and electricity generation in fuel cells. At severe (50–70%) CO2 reduction targets, hydrogen would cost-effectively supply more than half of the total useful energy demands in three out of four scenarios. The marginal emission reduction costs in the CO2 removal scenario at severe CO2 reduction targets are DFL 200/tCO2 (ca $ 100/t). In the nuclear, renewable and energy conservation scenarios these costs are much higher. Whilst the fossil fuel scenario would be less expensive than the other scenarios, the possibility of CO2 storage in depleted gas reservoirs is a conditio sine qua non.  相似文献   

5.
DJ Gielen 《Energy Policy》1995,23(12):1049-1062
Energy and material flows are closely related. The materials system is of major significance from a national energy and CO2 point of view. Integrated energy and materials studies can show significant new policy options for energy savings and CO2 emission reduction through materials system improvements, shown in a case study on long-term CO2 emission reduction in the Netherlands. An integrated energy and materials system MARKAL model is used for this analysis. The results show that, on one hand, CO2 emission reduction costs are significantly reduced in the integrated approach and, on the other hand, the materials system is significantly influenced by CO2 emission reduction. Consideration of dynamic interactions results in better understanding of future developments in both energy and materials systems.  相似文献   

6.
A natural gas (NG) fired power plant is designed with virtually zero emissions of pollutants, including CO2. The plant operates in a gas turbine-steam turbine combined cycle mode. NG is fired in highly enriched oxygen (99.7%) and recycled CO2 from the flue gas. Liquid oxygen (LOX) is supplied by an on-site air separation unit (ASU). By cross-integrating the ASU with the CO2 capture unit, the energy consumption for CO2 capture is significantly reduced. The exergy of LOX is used to liquefy CO2 from the flue gas, thereby saving compression energy and also delivering product CO2 in a saleable form. By applying a new technique, the gas turbine efficiency is increased by about 2.9%. The net thermal efficiency (electricity out/heat input) is estimated at 45%, compared to a plant without CO2 capture of 54%. However, the relatively modest efficiency loss is amply compensated by producing saleable byproducts, and by the virtue that the plant is pollution free, including NOx, SO2 and particulate matter. In fact, the plant needs no smokestack. Besides electricity, the byproducts of the plant are condensed CO2, NO2 and Ar, and if operated in cogeneration mode, steam.  相似文献   

7.
随着温室效应加剧,CO2减排行动已迫在眉睫。水合物法分离CO2工艺作为一种发展前景广阔的新型CO2分离技术,为CO2减排提供了一种解决思路。水合物法分离CO2工艺相比于化学吸收、物理吸附、深冷分离和膜分离等技术具有分离效率高、过程简单无副产物、条件温和的优势,为减缓CO2排放增加对环境造成的影响提供了一个中短期解决方案,以此为前提将允许人类继续使用化石燃料直至可再生能源技术广泛应用。本文综合分析了国内外的相关文献,介绍了水合物法分离CO2工艺的基本原理,并比较了水合物法分离CO2不同工艺的优劣之处,为进一步优化水合物法分离CO2工艺提供指导。  相似文献   

8.
The amount of CO2 produced by the daily activities of university students is estimated on the basis of statistical, questionnaire, and measurement data. The results reveal that a large proportion of CO2 emissions occurs during energy consumption, food preparation and transport, and that the CO2 emissions of dormitory residents are lower than those of students living in other situations. Practical methods for reducing student CO2 emissions are also examined.  相似文献   

9.
将二氧化碳埋存到深部盐水层中是目前缓解温室效应的可行性对策之一,在评价储层理论埋存量时,溶解封存量在总埋存量中占有很大的比例。本文通过对相关文献的调研,计算对比了Duan&Sun模型模拟数据与前人实验数据的误差,根据前人实验与本文模拟数据分析了二氧化碳在盐水层中溶解的动力过程和热力过程,二氧化碳通过扩散作用溶解到盐水中,引起盐水层密度的变化,计算系统瑞利数满足对流运动发生的基本条件后,系统产生对流,这有利于二氧化碳的溶解。分析了温度、压力和矿化度对二氧化碳溶解的影响。在前几百年内溶解缓慢易导致泄漏,低温高压、低矿化度下二氧化碳溶解度较高,小二氧化碳水滴更有利于二氧化碳封存。  相似文献   

10.
The utilization of CO2 in various products and services must be carefully assessed in order to achieve reduced CO2 emissions and simultaneously to add to the net economic benefit of society. In this paper, a framework for the assessment of CO2 utilization options in the chemical industry is outlined in which the total CO2 emission is estimated in four steps. First, the processes under study are surveyed to establish the consumption of different raw materials (reactants). Second, the CO2 emission due to the content of fossil carbon in the reactants is determined, i.e. the material-related emission. Third, the CO2 emission related to energy consumption in the studied processes is estimated, i.e. the direct energy-related emission. Fourth, the CO2 emission related to energy consumption in the reactant production processes is estimated, i.e. the indirect energy-related emission.  相似文献   

11.
The importance of wettability in enhanced oil recovery with high pressure CO2 has been demonstrated by some authors. When CO2 diffuse in hydrocarbons, it promotes swelling and reduction in contact angle and surface tension, these changes improve the tendency to fill the corners of solid surfaces, therefore filaments arise in corners. In this work, hydrocarbon-water-CO2 behavior was studied in cylindrical and square capillaries. Square capillaries were used in order to observe the wetting in corners. Cylindrical capillaries were used to determine if there is swelling in hydrocarbons due to the CO2 mass transfer, first through the water and then through the hydrocarbon. Contact angle and interfacial tension were measured in an attemp to explain the results. It was demonstrated that the CO2 diffusion occurs first through water and then through hydrocarbons. The CO2 diffusion is evident due to the contact angle diminution and the displacement of water-hydrocarbon interfaces. In addition, it was found that the behavior of water-hydrocarbon interphase depends on contact angle and surface tension. Finally, when interfacial tension is lower, the displacement is different and contact angle increasing is higher, as it was concluded by Campbell and Orr [1].  相似文献   

12.
Energy-related CO2 emission projections of China up to 2030 are given. CO2 mitigation potential and technology options in main fields of energy conservation and energy substitution are analyzed. CO2 reduction costs of main mitigation technologies are estimated and the multi-criteria approach is used for assessment of priority technologies.

The results of this study show (1) Given population expansion and high GDP growth, energy-related CO2 emissions will increase in China. (2) There exists a large energy conservation potential in China. (3) Adjustment of industry structure and increase of shares of products with high added value have and will play a very important role in reducing energy intensity of GDP. (4) Energy conservation and substitution of coal by natural gas, nuclear power, hydropower and renewable energy will be the key technological measures in a long-term strategy to reduce GHG emission. (5) Identification and implementation of GHG mitigation technologies is consistent with China's targets of sustainable development and environmental protection. (6) Energy efficiency improvement is a “no-regret” option for CO2 reduction, whereas an incremental cost is needed to develop hydropower and renewable energy.  相似文献   


13.
能源消费是人类活动排放CO2等温室气体的主要来源,碳减排已成为我国能源发展的一个重要约束因素。2012年全世界能源消费排放3.173 4×1010 t CO2,中国能源消费排放的CO2已占世界总排放量的26.0%。2012年全世界人均CO2排放量4 510 kg,而中国人均CO2排放量达到了6 093 kg。同年广东省人均CO2排放量为5 224 kg,高于世界平均水平,低于全国平均水平。随着节能减排和应对气候变化工作的推进,广东的单位产值能耗水平逐年降低,能源结构不断改善,使得全省化石能源消费带来的CO2排放量的增长势头得到抑制,2012年的排放量比2011年略有减少。按目前的发展趋势预测,到2020年,广东CO2排放总量将达到1.606 2×108 t碳当量,比2012年增加9.69×106 t碳当量,人均CO2排放量将达到5 287 kg,略高于2012年的5 224 kg。如果在“十三五”期间加快第三产业发展,则到2020年广东省化石能源消费总量将比2012年下降2.7%,CO2排放总量将比2012年下降3.5%,人均CO2排放量将由2012年的5 224 kg下降到2020年的4 795 kg,接近世界平均水平。  相似文献   

14.
The need to decompose CO2 emission intensity is predicated upon the need for effective climate change mitigation and adaptation policies. Such analysis enables key variables that instigate CO2 emission intensity to be identified while at the same time providing opportunities to verify the mitigation and adaptation capacities of countries. However, most CO2 decomposition analysis has been conducted for the developed economies and little attention has been paid to sub-Saharan Africa. The need for such an analysis for SSA is overwhelming for several reasons. Firstly, the region is amongst the most vulnerable to climate change. Secondly, there are disparities in the amount and composition of energy consumption and the levels of economic growth and development in the region. Thus, a decomposition analysis of CO2 emission intensity for SSA affords the opportunity to identify key influencing variables and to see how they compare among countries in the region. Also, attempts have been made to distinguish between oil and non-oil-producing SSA countries. To this effect a comparative static analysis of CO2 emission intensity for oil-producing and non oil-producing SSA countries for the periods 1971–1998 has been undertaken, using the refined Laspeyres decomposition model. Our analysis confirms the findings for other regions that CO2 emission intensity is attributable to energy consumption intensity, CO2 emission coefficient of energy types and economic structure. Particularly, CO2 emission coefficient of energy use was found to exercise the most influence on CO2 emission intensity for both oil and non-oil-producing sub-Saharan African countries in the first sub-interval period of our investigation from 1971–1981. In the second subinterval of 1981–1991, energy intensity and structural effect were the two major influencing factors on emission intensity for the two groups of countries. However, energy intensity effect had the most pronounced impact on CO2 emission intensity in non-oil-producing sub-Saharan African countries, while the structural effect explained most of the increase in CO2 emission intensity among the oil-producing countries. Finally, for the period 1991–1998, structural effect accounted for much of the decrease in intensity among non-oil-producers, while CO2 emission coefficient of energy use was the major force driving the decrease among oil-producing countries. The dynamic changes in the CO2 emission intensity and energy intensity effects for the two groups of countries suggest that fuel switching had been predominantly towards more carbon-intensive production in oil-producing countries and less carbon-intensive production in non-oil-producing SSA countries. In addition to the decomposition analysis, the article discusses policy implications of the results. We hope that the information and analyses provided here would help inform national energy and climate policy makers in SSA of the relative weaknesses and possible areas of strategic emphasis in their planning processes for mitigating the effects of climate change.  相似文献   

15.
Bill Keepin 《Energy Policy》1989,17(6):614-616
Improving energy efficiency is the most effective and least expensive way to reduce carbon dioxide (CO2) emissions in most industrialized nations— including the UK. A report from the UKAEA's own Energy Technology Support Unit concludes that energy efficiency can displace nearly four times more CO2 than nuclear power can - more quickly and more cost-effectively. Each pound invested in efficient lighting can displace four to five times as much CO2 as a pound invested in new nuclear power. Meanwhile, given recent dramatic progress in renewable energy technologies, the most promising long-term CO2-abatement strategy may be a synergistic combination of energy efficiency and renewable energy.  相似文献   

16.
CO2 in natural gas (NG) is prone to condense directly from gas to solid or solidify from liquid to solid at low temperatures due to its high triple point and boiling temperature, which can cause a block of equipment. Meanwhile, CO2 will also affect the calorific value of NG. Based on the above reasons, CO2 must be removed during the NG liquefaction process. Compared with conventional methods, cryogenic technologies for CO2 removal from NG have attracted wide attention due to their non-polluting and low-cost advantages. Its integration with NG liquefaction can make rational use of the cold energy and realize the purification of NG and the production of by-product liquid CO2. In this paper, the phase behavior of the CH4-CO2 binary mixture is summarized, which provides a basis for the process design of cryogenic CO2 removal from NG. Then, the detailed techniques of design and optimization for cryogenic CO2 removal in recent years are summarized, including the gas-liquid phase change technique and the gas-solid phase change technique. Finally, several improvements for further development of the cryogenic CO2 removal process are proposed. The removal process in combination with the phase change and the traditional techniques with renewable energy will be the broad prospect for future development.  相似文献   

17.
Promising electricity and hydrogen production chains with CO2 capture, transport and storage (CCS) and energy carrier transmission, distribution and end-use are analysed to assess (avoided) CO2 emissions, energy production costs and CO2 mitigation costs. For electricity chains, the performance is dominated by the impact of CO2 capture, increasing electricity production costs with 10–40% up to 4.5–6.5 €ct/kWh. CO2 transport and storage in depleted gas fields or aquifers typically add another 0.1–1 €ct/kWh for transport distances between 0 and 200 km. The impact of CCS on hydrogen costs is small. Production and supply costs range from circa 8 €/GJ for the minimal infrastructure variant in which hydrogen is delivered to CHP units, up to 20 €/GJ for supply to households. Hydrogen costs for the transport sector are between 14 and 16 €/GJ for advanced large-scale coal gasification units and reformers, and over 20 €/GJ for decentralised membrane reformers. Although the CO2 price required to induce CCS in hydrogen production is low in comparison to most electricity production options, electricity production with CCS generally deserves preference as CO2 mitigation option. Replacing natural gas or gasoline for hydrogen produced with CCS results in mitigation costs over 100 €/t CO2, whereas CO2 in the power sector could be reduced for costs below 60 €/t CO2 avoided.  相似文献   

18.
System analysis of hydrogen production from gasified black liquor   总被引:1,自引:0,他引:1  
E. Andersson  S. Harvey 《Energy》2006,31(15):3426-3434
Hydrogen produced from renewable biofuel is both clean and CO2 neutral. This paper evaluates energy and net CO2 emissions consequences of integration of hydrogen production from gasified black liquor in a chemical pulp mill. A model of hydrogen production from gasified black liquor was developed and integration possibilities with the pulp mill's energy system were evaluated in order to maximize energy recovery. The potential hydrogen production is 59 000 tonnes per year if integrated with the KAM reference market pulp mill producing 630 000 Air dried tonnes (ADt) pulp/year. Changes of net CO2 emissions associated with modified mill electric power balance, biofuel import and end usage of the produced hydrogen are presented and compared with other uses of gasified black liquor such as electricity production and methanol production. Hydrogen production will result in the greatest reduction of net CO2 emissions and could reduce the Swedish CO2 emissions by 8% if implemented in all chemical market pulp mills. The associated increases of biofuel and electric power consumption are 5% and 1.7%, respectively.  相似文献   

19.
China achieved the reduction of CO2 intensity of GDP by 45% compared with 2005 at the end of 2017, realizing the commitment at 2009 Copenhagen Conference on emissions reduction 3 years ahead of time. In future implementation of the “13th Five-Year Plan (FYP),” with the decline of economic growth rate, decrease of energy consumption elasticity and optimization of energy structure, the CO2 intensity of GDP will still have the potential for decreasing before 2020. By applying KAYA Formula decomposition, this paper makes the historical statistics of the GDP energy intensity decrease and CO2 intensity of energy consumption since 2005, and simulates the decrease of CO2 intensity of GDP in 2020 and its influences on achieving National Determined Contribution (NDC) target in 2030 with scenario analysis. The results show that China’s CO2 intensity of GDP in 2020 is expected to fall by 52.9%–54.4% than the 2005 level, and will be 22.9%–25.4% lower than 2015. Therefore, it is likely to overfulfill the decrease of CO2 intensity of GDP by 18% proposed in the 13th FYP period. Furthermore, the emission reduction potentiality before 2020 will be conducive to the earlier realization of NDC objectives in 2030. China’s CO2 intensity of GDP in 2030 will fall by over 70% than that in 2005, and CO2 emissions peak will appear before 2030 as early as possible. To accelerate the transition to a low-carbon economy, China needs to make better use of the carbon market, and guide the whole society with carbon price to reduce emissions effectively. At the same time, China should also study the synergy of policy package so as to achieve the target of emission reduction.  相似文献   

20.
This paper contains brief statements about three new low-cost methods of obtaining clean hydrogen in massive amounts.

In the first method, new technology for converting solar energy and water to hydrogen at a price of $2.50 for an amount of hydrogen equal in first law energy to that in a gallon of gasoline seems to follow from a company's announcement of their new technology, already working, in one fully industrialized plant, producing electricity at a price corresponding to that from coal.

In the second method, pure hydrogen (no accompanying CO2) can be obtained from natural gas and heat. The cost would be a little less than that of the low-cost hydrogen from water decomposition (and avoid storage of hydrogen for the 18 h/day of zero solar light).

In the third method, CO2 is extracted from the atmosphere and combined chemically with the low-cost hydrogen to produce methanol. On being used to produce heat or electricity (fuel cell), CO2 is left over. However, the amount of CO2, thus added to the atmosphere is just equivalent to the amount removed. The presence of low-cost hydrogen from water means that the resulting methanol will also be of low cost and be a cure for global warming without a radical change of distribution method.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号