首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
利用华南理工大学自主研发的注水系统和水辅注塑弯管模具,研究了熔体温度、模具温度、注水延迟时间、熔体注射量、注水压力、注水温度、熔体注射速率和熔体注射压力等8个水辅成型主要工艺参数对聚丙烯制品壁厚偏差率的影响,并分析了影响机理。结果表明,部分工艺参数对于制品弯曲段的壁厚偏差率有影响;增加注水延迟时间,降低注水压力和模具温度,短射填充区的制品壁厚的偏差率有所减小;提高熔体温度,壁厚偏差率的波动幅度增大。  相似文献   

2.
刘旭辉  黄汉雄 《化工学报》2011,62(2):520-524
基于水辅助注塑仿真模具,采用示踪技术,对不同注水延迟时间、注水压力、熔体温度和熔体填充量下的水辅助充模的熔体流痕进行了考察,研究了工艺参数对熔体流动的影响.实验结果表明:随着注水延迟时间的增加,一次穿透中的回流区域呈向水道边靠近的趋势,随水流动的熔体减少,受强剪切作用的熔体区域在水道边变窄.熔体温度低,模壁附近的高黏度...  相似文献   

3.
基于自行搭建的水辅助共注塑实验平台,通过正交实验制备了系列水辅助共注塑管件,探究工艺参数对各层壁厚、拉伸性能及各相结晶的影响。结果表明,外层壁厚随着外层熔体温度、注水压力、内层熔体注射压力、模具温度增大而逐渐减小,随着熔体注射切换延迟时间、注水延迟时间增大而逐渐增大;内层壁厚随着注水延迟时间、内层熔体注射压力增大而逐渐增大,随着注水压力、模具温度增大而逐渐减小;管件拉伸强度随着外层熔体温度增大而逐渐减小,随着熔体注射切换延迟时间、注水延迟时间增大而逐渐增大;工艺参数会影响到成型壁厚及冷却进程,进而影响各相结晶度,最终影响管件性能。  相似文献   

4.
水辅助注塑制品水穿透长度和残留壁厚的研究   总被引:9,自引:0,他引:9  
介绍了自主研发的水辅助注塑设备以及一款经过大量实验后得到的新型喷嘴,并通过单因素实验法研究了短射法成型聚丙烯弯管时工艺参数对制品水穿透长度和沿水道的残留壁厚的影响。结果表明,熔体注射量对水穿透长度影响最大,当其增加13.5%时水穿透长度减小了153mm;沿水道上制品注水后充填部分比注水前充填部分的残留壁厚减小约0.5~1.0 mm;提高注水压力与增加注水延迟时间时注水后填充部分的残留壁厚略有减小。  相似文献   

5.
使用流体力学软件,对使用溢流法的三维120 °~150 °弯曲圆管件进行了水辅助注射成型可视化研究。分别改变水针口径尺寸、注水延迟时间、注水压力与熔体温度,分析其对制件内部水穿透行为的影响。结果表明,水针口直径为7 mm时,能显著增加制件的内部穿透长度并得到残余壁厚更薄的制件;受水针结构影响,注水延迟时间为1 s、注水压力为8 MPa、熔体温度为250 ℃时,水穿透长度最优能增长400 %,壁厚减少20 %;在注水延迟时间为1 s、注水压力为10 MPa、熔体温度为230 ℃时,穿透长度最大达到298 mm;注水延迟时间为1 s、注水压力为8 MPa、熔体温度为250 ℃时,比熔体温度为210 ℃和230 ℃的实验组受水针影响严重;缩短注水延迟时间、增加注水压力、升高熔体温度都能有效增大制件的中空率,成型出更薄的管件,但是水针对水辅助注射成型的影响不容忽视,其微小变化能极大地改变成型制件的内部型腔,有效提高水穿透行为的效率。  相似文献   

6.
《塑料》2016,(6)
采用互不相溶黏弹多相流求解器对溢流法水辅助共注塑填充过程进行模拟。针对注水压力这一重要工艺条件,系统的数值分析后发现,注水压力越大,皮层和内层熔体的残余厚度减小且中空率增大,同时基于熔体本身所固有的黏弹特性对结论进行了解释。最后进行了溢流法水辅助共注塑的实验,结论与数值模拟所得结论保持一致。  相似文献   

7.
采用方形截面管件,以短玻璃纤维增强聚丙烯为原料,通过溢流法水辅助注射成型实验探究了熔体注射温度、注水延迟时间和注水压力等工艺参数对制件宏观现象的影响机理,并分析了高压水在方形管道中的穿透行为。结果表明,当熔体温度升高时,方管的直角边和斜边残余壁厚都呈减小趋势,但温度过高时会出现管件收缩现象,管件截面中空面积增大且截面形状与高压水的穿透前沿形状一致,偏圆形,但截面的圆率逐渐减小;当注水压力增加时,管件残余壁厚减小,截面中空面积增大,其截面形状随着注水压力的增加逐渐与型腔结构一致,偏方形;当注水延迟时间增加时,管件残余壁厚增大,中空截面减小且管件截面形状也与高压水前穿透前沿一致,偏圆形,但相较另外两个参数,注水延迟时间对方管件的影响程度更小,因而对截面的圆率影响不大。  相似文献   

8.
介绍自主研发的用于研究水辅助注塑的注水系统,从熔体流动的踪迹、水/熔体界面的运动演变、制品内径的变化和共混物分散相形态的演变等4个方面,对研究水辅助熔体充模流动机理的实验设备和实验方法进行阐述,并展示了实验结果.  相似文献   

9.
使用毛细管流变仪考察了3种高填充聚丙烯(PP)纳米复合材料的挤出胀大行为,研究了口模温度、剪切速率、熔体压力、纳米粒子填充比例和纳米粒子形貌对PP纳米复合材料熔体挤出胀大比的影响。结果表明,3种PP纳米复合体系熔体的挤出胀大比均随口模温度的增加而减小,且大致呈线性关系;随着剪切速率的增大而增加,且随着填料填充比例的增加有减小的趋势;随着熔体压力的增大而增加,并且随着熔体压力的增加,其挤出胀大比随填料填充比例的增加而减小的幅度下降;3种颗粒形貌纳米粒子填充体系中,在相同的体积分数和温度下,片状结晶纳米氢氧化镁[Mg(OH)2]填充体系熔体挤出胀大比最小,球状纳米碳酸钙(CaCO3)填充体系熔体挤出胀大比最大,棒状粒子埃洛石纳米管(HNTs)填充体系熔体挤出胀大比介于两者之间。  相似文献   

10.
水辅助注射成型中水穿透行为的可视化研究   总被引:3,自引:0,他引:3  
基于自主研发的注水系统,利用具有矩形变截面和弯道模腔的水辅助注塑可视化模具,采用聚苯乙烯(PS)材料,对不同水压下的水辅助熔体流动充模的过程进行了观察,着重研究了水的穿透行为。研究发现:注水喷嘴的冷却使其周围熔体黏度增大,水穿透高黏度熔体区后产生紊动射流,射流穿透长度随注水压力的增大而增长。注水压力较低时,水的穿透方向容易发生改变,注水压力越高,水道越光滑。水在弯道入口和收敛过渡区的穿透过程中前缘逐渐缩小,在弯道出口和扩散过渡区的穿透过程中前缘逐渐扩宽。  相似文献   

11.
The residual thicknesses of the skin and the inner layers are important quality indicators of water‐assisted co‐injection molding (WACIM) process or overflow WACIM (O‐WACIM) parts. At the curved section, the residual thicknesses change significantly. A numerical simulation program based on the computational fluid dynamics method was developed to simulate the O‐WACIM process. After the numerical simulation program was validated with the experimental results, it was used to study the effects of the bending radii and bending angles on the residual thicknesses of the skin and inner layers of O‐WACIM parts. The results showed that the penetration of the inner melt and water was always close to the inner concave side due to the higher local pressure gradient and temperature. The effects of processing parameters on the residual thicknesses of the skin and inner layers were investigated using the orthogonal simulation method. It was found that the residual thicknesses of the skin/inner layer at the inner concave/outer convex side are mainly influenced by different parameters. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42468.  相似文献   

12.
Water‐powered projectile‐assisted injection molding (W‐PAIM) is an innovative molding process for the production of hollow shaped polymer parts. The W‐PAIM utilizes high pressure water as a power to drive a solid projectile to displace the molten polymer core to form the hollow space. The residual wall thickness (RWT) and its distribution are the important quality criteria. The experimental and numerical investigations were conducted. Experimental specimens showed that the RWT of a W‐PAIM pipe was much thinner than that of a water‐assisted injection molding pipe. The cross‐section size of the projectile defined the basic penetration section size. The software FLUENT was used to obtain the instantaneous distributions of the flow field, which revealed the forming mechanism of the RWT. The experiments indicated that the processing parameters, such as melt temperature, melt injection pressure, mold temperature, and water injection delay time had obvious effects on the RWT, while the water pressure had little effect on it. The RWT of curved pipes was thin at the inner concave side while thick at the outer convex side. The RWTs at the bend portion are influenced by the deflection angle and bending radius, which is due to the pressure difference between the two sides. POLYM. ENG. SCI., 59:295–303, 2019. © 2018 Society of Plastics Engineers  相似文献   

13.
The residual wall thicknesses (RWT) of the skin and the inner layers are important quality indicators of water‐assisted co‐injection molding (WACIM) parts. The influences of the shape of the cavity cross section and the processing parameters, including the water pressure, water delay time, inner melt temperature, and inner melt flow rate, on the penetration of the inner melt and water were explored via experiments. The results showed that the shape of the penetration section of the inner melt was closer to the cavity section with round corners, while that of the water ended up being round. Both the penetration ratios of the inner melt and the water increased proportionally with increasing circle ratio. Both the minimum values of the total RWT and the inner melt RWT increased with increasing circle ratio. Both the maximum values of the total RWT and the inner melt RWT increased with increasing Max_D, which is the maximum distance between the inscribed circle center and the wall. Both the penetration ratios of the inner melt and the water increased with increasing water pressure, decreased with increasing water delay time, and increased with increasing inner melt flow rate and increasing inner melt temperature. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 132, 42866.  相似文献   

14.
Corrosion and salt deposition problems severely restrict the industrialization of supercritical water oxidation. Transpiring wall reactor can effectively weaken these two problems by a protective water film. In this work, methanol was selected as organic matter, and the influences of vital structural parameters on water film properties and organic matter removal were studied via numerical simulation. The results indicate that higher than 99% of methanol conversion could be obtained and hardly affected by transpiration water layer, transpiring wall porosity and inner diameter. Increasing layer and porosity reduced reactor center temperature, but inner diameter's influence was lower relatively. Water film temperature reduced but coverage rate raised as layer, porosity, and inner diameter increased. Notably, the whole reactor was in supercritical state and coverage rate was only approximately 85% in the case of one layer. Increasing reactor length affected slightly the volume of the upper supercritical zone but enlarged the subcritical zone.  相似文献   

15.
利用装配有自主设计的注水装置的共注塑机对水辅助共注塑(WACIM)弯管的壁厚分布进行了实验与分析。结果表明,溢流法WACIM弯管弯曲外侧的总壁厚及内层壁厚都较厚,而弯曲内侧的总壁厚及内层壁厚均较薄;短射法WACIM弯管的总平均壁厚及内层平均壁厚均比溢流法更薄,后段弯曲处外侧的总壁厚及内层壁厚比溢流法显著更薄;随着弯曲角度的增加,弯曲外侧的总壁厚及内层壁厚增加,内侧的总壁厚及内层壁厚减小。  相似文献   

16.
The present study was carried out to investigate the flow characteristics through the curved section of a radiant tube which is used in the steel industry. The velocity profiles in the curved section were measured at a 1/2 scale water model apparatus by using 2D-LDV. The flow was also simulated numerically and a comparison was made with the experimental results. The flow characteristics in the curved section for various flow conditions of the burner was investigated. The secondary flow in the curved section and the flow stagnation phenomena at the end of the curved section were confirmed. It was found that the swirl velocity component imparted by the burner degrades the uniformity of flow and enlarges the stagnant region in the curved section. This flow pattern is supposed to cause non-uniform heat transfer and the local failure at the end of the curved section.  相似文献   

17.
Plastic tubes and hollow rods can be fabricated using gas‐assisted injection molding technology with reduced cost. The residual wall thickness around dimensional transitions and curved sections is of great concern. This research investigated the uniformity of the residual wall thickness distribution in circular tubes with dimensional variations and curved sections. It was found that the wall thickness was not uniform near transitions. With the addition of fillets with proper angles around transitions, the uniformity of residual wall could be greatly improved. The residual wall thickness in curved sections was thick around the outer wall and thin around the inner wall. Low melt temperature and high gas pressure were found to reduce the deviation in the wall thickness around curved sections.  相似文献   

18.
The report concerns basic technological features of simple solar stills utilizing tubes for sea water desalting. The evaporation section comprises horizontal transparent thin-walled plastic or glass tubes, of ~0.10–0.25 m inner diameter, half-filled with sea water which absorbs solar radiation. The condensation section is physically separated from the evaporation section, in a shaded space below it, and comprises horizontal plastic or metal tubes of ~0.01 m inner diameter. The wall thickness of condenser plastic tubes is rather small, ~50 μm.

Water vapour released by solar radiation in evaporator tubes flows into condenser tubes to be condensed into produced fresh water by delivering condensation latent heat to atmospheric air. Heat transfer by air convection may be helped by surface winds, often available in coastal areas. Enhanced fresh water productivity is expected with respect to conventional solar stills in which sea water evaporation and water vapour condensation occur in one confined space. Technological features of the proposed solar stills are analysed in some detail and specific experimental work is suggested on prototype solar stills in view of clarifying relevant aspects concerning transparent and opaque construction materials, assembling procedures, and the role of the various operative parameters vis-à-vis energy efficiency and fresh water productivity.  相似文献   


19.
于同敏  张拯恺  邹德健 《化工学报》2017,68(4):1306-1317
基于对微注塑成型过程中聚合物熔体充模流动时黏性耗散效应的理论分析,以聚丙烯(PP)和高密度聚乙烯(HDPE)两种聚合物材料,在不同工艺参数作用下流经不同当量直径和长径比矩形截面微模具通道时,由黏性耗散效应引起的微通道中熔体温度变化进行了试验测量和数值模拟。结果显示,微通道出口熔体温度的试验测量和数值模拟值与理论计算值非常吻合,且其平均误差小于1℃。同时研究发现,增大微模具通道当量直径和长径比时,熔体流动时的黏性耗散热量增多,通道出口熔体温度升高;而当微通道几何尺寸一定时,其黏性耗散热量随注射速度和注射压力的升高而增加,随熔体温度和模具温度的升高而降低;但同样试验条件下,对剪切作用敏感性强的PP材料的黏性耗散热量明显高于对剪切敏感性弱的HDPE材料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号