首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用快速黏度分析法、离心法、差示扫描量热分析法、动态流变仪分析法等,研究了干热与湿热处理对3种不同直链淀粉含量的玉米淀粉糊化性质、膨润性质、热力学性质、流变性质的影响,为淀粉的物理改性研究和加工应用提供理论依据。结果表明,干热处理使淀粉更易糊化,表现为3种玉米淀粉糊化温度降低,溶解度、膨胀度增加。湿热处理加大糊化难度,使3种玉米淀粉的糊化温度升高,膨胀度降低。热处理使玉米淀粉糊稠度、糊化焓值降低。蜡质玉米淀粉经热处理后,溶解度和老化率增加。流变性质测定结果表明,湿热处理不利于高直链玉米淀粉黏弹性凝胶的形成。  相似文献   

2.
The effects of starch particle size and leached amylose on the viscosity of rice starch dispersions and changes of short-range structure and amylose content in starch granules of different rice varieties during heating were investigated. It was found that starch granule swelling increased rice starch dispersion viscosity during heating. The viscosities of the starch dispersions during heating were principally dependent on granular volume fraction and independent of starch variety. A distinct correlation between the amount of leached amylose and swelling of starch granules was also found. High initial amylose concentrations in starch granules reduced swelling during heating, thereby reducing rice dispersion viscosities. Fourier-transform IR spectroscopy indicated that the loss of short-range order was significant when the temperature reached the pasting onset temperature. The short-range order of waxy and medium grain rice starches was higher than that of long grain rice starches before gelatinization. The loss of order of waxy and medium grain rice starches was greater than that of long grain rice starches during heating, which was due to the presence of amylose, restraining the swelling and disruption of starch granules during heating.  相似文献   

3.
Morphological, viscoelastic, hydration, pasting, and thermal properties of starches separated from 10 different rice cultivars were investigated. Upon gelatinization, the G′ values of the rice starch pastes ranged from 37.4 to 2057 Pa at 25 °C, and remarkably, the magnitude depended on the starch varieties. The rheological behavior during gelatinization upon heating brought out differences in onset in G′ and degree of steepness. The cultivar with high amylose content (Goami) showed the lowest critical strain (γc), whereas the cultivars with low amylose content (Boseokchal and Shinseonchal) possessed the highest γc. The amylose content in rice starches affected their pasting properties; the sample possessing the highest amylose content showed the highest final viscosity and setback value, whereas waxy starch samples displayed low final viscosity and setback value. The onset gelatinization temperatures of the starches from 10 rice cultivars ranged between 57.9 and 64.4 °C. The amylose content was fairly correlated to hydration and pasting properties of rice starches but did not correlate well with viscoelastic and thermal characteristics. The combined analysis of hydration, pasting, viscoelastic, and thermal data of the rice starches is useful in fully understanding their behavior and in addressing the processability for food applications.  相似文献   

4.
The physicochemical and pasting properties of high amylose rice starches isolated using alkaline steeping method from different Korean rice cultivars, Goamy2 and Goamy, and from imported Thai rice were examined. The protein and lipid contents of the Goamy2 starch were higher than those of the other two starches. The amylose and total dietary fiber contents were ranged from 31.4 to 36.8% and from 6.3 to 8.6%, respectively. Total dietary fiber was positively correlated to amylose content. Water binding capacity was higher in the Goamy2 starch (172.2%) than in the Goamy and Thai rice starches (112.7–115.6%). The swelling power of the Goamy2 starch showed lower values, but its value at 95°C was similar to others because of its rapid increment at 85°C. The granular size of Goamy2 starch was widely distributed compared to those of others. The Goamy2 starch showed a high initial pasting temperature (92.0°C) and low breakdown and setback viscosities. The Goamy and Thai rice starch granules were polygonal‐shaped with A‐type crystals, whereas the Goamy2 starch granules were round‐shaped with B‐type crystals. Goamy and Goamy2 starches showed a single endotherm at 60.8 and 76.0°C for peak temperature and 10.0 and 11.5 J/g for gelatinization enthalpies, respectively. The Thai rice starch presented an endotherm with a shoulder peak at 68.3°C (75.3°C for the main peak) and a gelatinization enthalpy of 12.4 J/g.  相似文献   

5.
Starch was isolated from the corn lines obtained by crossing two different germ pools (MS and Tux pool) and evaluated for amylose content, swelling power, solubility, water binding capacity (WBC) and syneresis. The gelatinization (To, Tp, Tc, ΔHgel, PHI & R) and pasting (pasting temperature, peak viscosity, breakdown viscosity, final viscosity and set back) properties of starches were measured using Differential Scanning Calorimeter (DSC) and Rapid Visco Analyzer (RVA), respectively. The relationships between different properties were also determined using pearson correlation coefficients. Amylose content was negatively correlated to swelling power and WBC (p < 0.05). Several significant relationships were also observed between thermal and pasting properties of isolated starches. Transition temperatures (To, Tp & Tc) and PHI showed positive correlation with peak, trough and breakdown viscosity (p < 0.05). Syneresis of starches was positively correlated to amylose content (p < 0.05).  相似文献   

6.
Starch is the main component of wheat having a number of food and industrial applications. Thousands of cultivars/varieties of different wheat types and species differing in starch functionality (thermal, retrogradation, pasting and nutritional properties) are grown throughout the world. These properties are related to starch composition, morphology and structure, which vary with genetics, agronomic and environmental conditions. Starches from soft wheat contain high amounts of surface lipids and proteins and exhibit lower paste viscosity, whereas that from hard cultivars contain high proportion of small granules and amylose content but lower gelatinization temperature and enthalpy. Waxy starches exhibit higher‐percentage crystallinity, gelatinization temperatures, swelling power, paste viscosities and digestibility, but lower‐setback viscosity, rate of retrogradation and levels of starch lipids and proteins than normal and high‐amylose starches. Starches with high levels of lipids are less susceptible towards gelatinization, swelling and retrogradation and are good source of resistant starch, while that with high proportion of long amylopectin chains are more crystalline, gelatinize at high temperatures, increase paste viscosity, retrograde to a greater extent and decrease starch digestibility (high resistant and slowly digestible starch and low rapidly digestible starch).  相似文献   

7.
以乳酸菌发酵降镉后的大米作为研究对象,通过Osborne分级提取法分离出蛋白质后,分层提取大米白、黄淀粉。分析乳酸菌发酵降镉对大米淀粉的微观形态、结晶度、热特性、糊化特性、溶解度和膨润力的影响。结果表明,乳酸菌发酵降镉对大米白、黄淀粉的表面有轻微的损害;晶型未改变,为A型,但结晶度降低;糊化初始温度增加,吸热焓降低;随着糊化温度和峰值时间增加,崩解值减小;溶解度和膨润力均有小幅度增加。  相似文献   

8.
8个品种甘薯淀粉的理化性质及其相关性分析   总被引:1,自引:0,他引:1  
以8个品种甘薯淀粉为研究对象,研究了甘薯淀粉的颗粒形态、粒径大小和结晶特性等结构特性,糊化特性、凝胶质构、溶解度、膨胀度和冻融稳定性等功能特性,并分析了甘薯淀粉结构与功能特性间的相关性。结果表明,不同品种甘薯淀粉的直链淀粉含量不同,其颗粒形态在不同品种间没有明显差异,均具有典型的A型衍射图谱;淀粉粒径大小和糊化参数在不同品种间差异明显。甘薯淀粉的溶解度和膨胀度与温度有关,均随温度的上升而增大。相关性分析表明,直链淀粉含量与回生值、硬度、胶着性、咀嚼性、析水率均呈显著正相关(r=0.807,0.721,0.722,0.734,0.803,P<0.05),与凝胶回复性呈显著负相关(r=-0.832,P<0.05)。平均粒径与内聚性、膨胀度呈显著负相关(r=-0.762,-0.775,P<0.05)。此外,甘薯淀粉糊的回生值与凝胶硬度、胶着性和咀嚼性均呈显著正相关(P<0.05),而与内聚性呈显著负相关(P<0.05)。本研究结果可为甘薯淀粉的精深加工和具体应用领域的甘薯淀粉选择提供一定的科学依据。  相似文献   

9.
Canna edulis Ker starch was modified by heat-moisture treatment at moisture levels ranging from 18 to 27 g/100 g starch and its physicochemical properties were investigated. Amylose content, swelling power, solubility as well as water and oil absorption capacity in native starch were higher than in all treated starches. However, alkaline water retention and acid susceptibility of native starch were lower, along with different extent of amylose leaching. The result in the X-ray diffraction measurement revealed that the crystalline type of the starch gradually changed from B-type to A-type, and the degree of crystallinity changed. Investigation on thermal properties showed that the gelatinization enthalpy decreased, whereas the onset temperature, peak temperature, concluding temperature and transition temperature range increased in modified starch than in native starch. In addition, all modified starches exhibited remarkably low values of peak viscosity, hot pasting viscosity and final viscosity, compared to those of native starch.  相似文献   

10.
The starches and flours from four different rice cultivars were evaluated for composition, crystallinity characteristics, blue value, turbidity, swelling power, solubility, pasting properties, and textural and retrogradation properties. The amylose content of starches and flours from different rice cultivars differed significantly. The results showed that the physicochemical properties of rice starch and rice flour were correlated to amylose content. The crystallinity degree of rice starch and flour depended on amylose content. The blue value, turbidity value, and gel hardness were positively correlated to amylose content; however, the swelling power, solubility, and gel adhesiveness were negatively correlated to amylose content. Furthermore, the pasting properties and gel textural and retrogradation properties of rice flours were related to the structure properties of rice starch. And the characteristics of starch, protein, and lipid significantly influenced the turbidity, pasting properties, and gel textural and retrogradation properties of rice flours.  相似文献   

11.
为进一步探讨韧化处理对淀粉性质的作用机理,通过测定糊化性质、热特性、膨胀力、结晶特性及观察偏光十字现象和微观结构,研究了不同韧化温度和时间对不同直链淀粉质量分数玉米淀粉(普通玉米淀粉(normal corn starch,NCS)和蜡质玉米淀粉(waxy corn starch,WCS))物化性质的影响。结果表明,韧化处理主要作用于NCS和WCS淀粉颗粒的无定形区,对淀粉结晶类型没有影响;但韧化处理能够明显增强NCS和WCS的热稳定性和抗剪切能力,抑制淀粉老化和糊化,显著降低峰值黏度和膨胀力(P<0.05)。韧化温度升高至60 ℃时韧化效果更加明显,糊化焓和相对结晶度明显降低,颗粒表面被明显破坏。但延长韧化时间对NCS和WCS老化的抑制效果和对糊化焓、膨胀力、颗粒形貌等的影响不明显。  相似文献   

12.
马铃薯淀粉因其特殊性质而具有广泛的用途和潜在的应用价值。淀粉的理化和功能性质受淀粉来源的影响,本实验以8 种不同品种的马铃薯为原料提取淀粉,并对其化学组成和淀粉的物化特性进行了研究与相关性分析。结果表明:马铃薯淀粉的结晶度与淀粉的储能模量最大值温度TG′max 显著负相关,与膨润度呈显著负相关;直链淀粉含量和磷含量分别与储能模量最大值温度TG′max、储能模量峰值G′max、糊化起始、峰值和终止温度To、Tp 和Tc,溶解度和膨润度呈显著正相关,与结晶度呈显著负相关;直链淀粉含量与糊化热焓呈显著负相关。  相似文献   

13.
Several commercial starch noodles made from legume, tuber, geshu (kudzu and sweet potato) and fernery starches were used to study the characteristics of starch in starch noodles and their effect on eating quality of starch noodles. Scanning electron microscopy observation found that the special inner structure of starch noodles was composed of some broken starch granules and some gel-like substances. Tuber and legume starches had the highest and lowest solubility, swelling power, swelling factor, setback, breakdown, peak viscosity, and final viscosity, respectively. Legume and tuber starches had the highest and lowest gelatinization temperature, respectively. Tuber and geshu starches had the highest amylose leaching rate, while legume starches owned the lowest value (p < 0.05). Tuber starches had the highest conclusion temperature of gelatinization (151.12~158.86°C). Fernery starches had the lowest value of retrogradation enthalpy (967.33 J/g dry starch). Legume starch noodles had the lowest broken rate (0.00~1.67%), swelling ratio (332.64~343.57%), and cooking loss (2.40~2.74%), and the highest hardness (87.47~93.29 g/mm2), shear deformation (0.49~0.52), and elasticity (0.58~0.62), However, tuber and fernery starch noodles did the opposite, tuber and legume starch noodles had the highest and lowest cohesiveness, respectively. All the above cooking and starch properties test results of starch noodles demonstrated that, compared with others, legume starch noodles are relatively well in eating quality. The correlation analysis showed that the cooking and physical quality of starch noodles could be perfected significantly by improving the swelling and pasting properties for starch of starch noodles, while thermal properties had no obvious influence on them.  相似文献   

14.
This study investigates the effects of water-soluble mucilages (0, 2.5, and 5 g/100 g; w/w, dry basis) on the thermal and pasting properties of isolated starches from three root and tuber crops. The results show that yam tuber presents the greatest level of mucilage and also possess the largest amylose content of the three isolated starches. The addition of mucilage caused a remarkable increase in the temperature of gelatinization for the three tested starches due to the competition for water during starch gelatinization. Furthermore, adding mucilage increased the phase transition temperature range (Tc-To) of starches but decreased enthalpy (ΔH). However, although the pasting temperature increased with the addition of mucilage into tuber starches, it did not change that of taro starch. The peak viscosity of taro and sweet potato starches decreased significantly as their mucilages were added into each starch suspension system (p < 0.05). However, the addition of mucilage slightly increased the viscosity of yam starch. Furthermore, the addition of mucilage slightly increased the swelling power of yam and taro starches, but did not change that of sweet potato starch.  相似文献   

15.
Starch from water chestnuts (Trapa natans) was isolated and modified by dry heating and hydrocolloids [carboxy methyl cellulose (CMC) and sodium alginate]. Native and modified starches were evaluated for their physicochemical, pasting, thermal and morphological properties. Pasting and thermal properties were studied using Rapid Visco Analyzer (RVA) and Differential Scanning Calorimeter (DSC) respectively. Morphological properties were studied by Scanning Electron Microscopy (SEM). Modification of the starch by dry heating with and without gums reduced paste clarity and increased the water and oil binding capacity; solubility and swelling power decreased. Dry heating of native starch increased peak viscosity; however, with addition of CMC, peak viscosity decreased. Starch modified with CMC and 4 h heating exhibited lowest gelatinization temperature (T0). Pasting characteristics of native water chestnut starch were largely affected by the addition of gums and/or heat treatment. Overall onset gelatinization temperature reduced with heat treatment and addition of gums. Morphological studies revealed no significant variation in starch granule size. Starch granules were seen agglomerated because of leaching of amylose and granule interspacing decreased with addition of gums.  相似文献   

16.
不同品种绿豆淀粉的功能特性比较研究   总被引:1,自引:1,他引:1       下载免费PDF全文
以9个品种绿豆淀粉为研究对象,研究了绿豆淀粉的化学组成及糊化特性、溶解度、膨胀度和冻融稳定性等功能特性,并分析了直链淀粉含量与功能特性的相关性。结果表明,不同品种绿豆淀粉直链淀粉含量不同,其分布范围为33.10%~44.08%;不同品种淀粉糊化特性参数间有明显差异;潍绿4号和中绿1号绿豆淀粉峰值粘度显著高于其他品种(p0.05),安绿8号具有最低破损值(p0.05),毛绿豆和安绿092具有较低的回生值。绿豆淀粉的溶解度和膨胀度与温度有关,均随温度的增加而增大。不同品种绿豆淀粉糊经一次冻融后析水率均较高,随冻融循环次数的增加,析水率均逐渐增大。相关性分析表明,直链淀粉含量与淀粉糊的最终粘度和回生值之间存在显著正相关(r=0.674,r=0.725;p0.05),与膨胀度之间具有极显著负相关关系(r=-0.805,p0.01)。  相似文献   

17.
Rice starches from TKW1, TNG67 and TCS17 varieties, differing widely in amylose contents (0.1, 18.3 and 29.2%) were treated at 45 °C for 1 h in methanol containing various amounts of HCl. The recovery, pasting properties, thermal behaviors, molecular size and chain length distribution of starch were observed. Starches exhibited widely different pasting and thermal behavior upon acid-methanol treated (AMT). Degradation of starches upon AMT affected the leaching extent and chain length of amylose. No obvious changes were found on chain length and content of chain fractions of amylopectin. The pasting viscosity of rice starch decreased with increasing concentration of HCl, and the pasting profiles depended on the variety of rice. The pasting profile of AMT-TNG67 starch showed a two-step increasing pattern during heating, while TKW1 and TCS17 starches showed smoothly increasing pasting curves. The relationship between pasting patterns of AMT-TNG67 starches with amylose leaching and two stages of swelling behavior of starch granules was investigated. Results indicated that the pasting of starch granules depend on the amount, as well as the chain length, of amylose in granules.  相似文献   

18.
目的探索大米食用品质的混合实验仪(Mixolab)表征点。方法利用混合实验仪测定70种大米的相关参数,用国标法测定大米品质理化指标(蛋白质、直链淀粉含量和胶稠度),并用描述性分析法对大米进行感官评定,分析Mixolab图谱特征值与大米的理化指标以及感官评定指标之间的相关关系。结果蛋白质含量与淀粉糊化特性、淀粉热糊化胶的稳定性以及冷却阶段糊化淀粉的回生特性呈显著负相关,直链淀粉含量与吸水率呈显著负相关,与蛋白质弱化、淀粉糊化特性、淀粉热糊化胶的稳定性、冷却阶段糊化淀粉的回生特性、淀粉糊化的速度、淀粉酶的水解速度和淀粉的崩解值呈显著正相关,胶稠度与吸水率和冷却阶段糊化淀粉的回生特性呈显著正相关;感官评定质地方面的粘性、硬度和凝聚性均和Mixolab的冷却阶段糊化淀粉的回生特性值有显著相关性。结论混合试验仪法应用于大米食用品质的评价是可行的,其中冷却阶段糊化淀粉的回生特性可以作为大米食用品质评价的参考表征点。  相似文献   

19.
Amylography, scanning electron microscopy and storage tests demonstrated that native pea starches were highly resistant to granule disintegration during heating in dilute slurries, resulting in low hot paste viscosity, high retrogradation and syneresis. Cationization at degrees of substitution of 0.02 to 0.05 reduced the pasting and gelatinization temperatures, increased peak viscosities and set-back on cooling but eliminated syneresis after storage at 4°C and − 15°C. The principal effects of cationization were to promote rapid granule dispersion at low pasting temperatures, yielding a molecular dispersion of amylose and amylopectin on heating to 95°C. On cooling, the gel structures were firm and the cationic groups controlled the realignment of starch chains during low temperature storage.  相似文献   

20.
The effect of hydroxpropyl β-cyclodextrin (HPβ-CD) on physical properties and digestibility of wheat, potato, waxy maize and high-amylose maize starches before and after acetylation was studied. Effect of HPβ-CD on amylose–lipid complexes in native and acetylated potato starches synthesized using α-lysophosphatidylcholine was also studied. Acetylation increased swelling factor, amylose leaching, peak viscosity and susceptibility to α-amylase hydrolysis, but decreased gelatinization temperature and enthalpy and gel hardness in all starches. HPβ-CD markedly increased swelling factor and amylose leaching in native and acetylated wheat starches but had little or no impact on other starches. Wheat starch gelatinization enthalpy decreased in the presence of HPβ-CD but gelatinization temperature of all the starches was slightly increased. HPβ-CD had no influence on enzymatic hydrolysis. Melting enthalpy of amylose–lipid complex in both native and acetylated wheat starches was decreased by HPβ-CD. Acetylation also decreased the melting enthalpy of amylose–lipid complex in wheat starch. Similar trend of thermal transitions was observed in the presence of HPβ-CD for the amylose–lipid complexes synthesized in potato starch. Acetylation reduces the complex formation ability of the amylose polymer. Similar to gelatinization, acetylation widened the melting temperature range of amylose–lipid complexes while shifting it to a lower temperature. Higher swelling and amylose leaching, and decreased gelatinization temperature and enthalpy resulting from acetylation of wheat starch is consistent with its influence on starch hydration. Similar effects resulting from the inclusion of HPβ-CD were consistent with the disruption of amylose–lipid complex by HPβ-CD which promotes granular hydration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号