首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The majority of peripheral blood gamma delta T cells in human adults expresses T cell receptors (TCR) with identical V regions (V gamma 9 and V delta 2). These V gamma 9 V delta 2 T cells recognize the major histocompatibility complex (MHC) class I-deficient B cell line Daudi and broadly distributed nonpeptidic antigens present in bacteria and parasites. Here we show that unlike alpha beta or V gamma 9- gamma delta T cells, the majority of V gamma 9V delta 2 T cells harbor natural killer inhibitory receptors (KIR) (mainly CD94/NKG2A heterodimers), which are known to deliver inhibitory signals upon interaction with MHC class I molecules. Within V gamma 9V delta 2 T cells, KIR were mainly expressed by clones exhibiting a strong lytic activity against Daudi cells. In stark contrast, almost all V gamma 9V delta 2 T cell clones devoid of killing activity were KIR-, thus suggesting a coordinate acquisition of KIR and cytotoxic activity within V gamma 9V delta 2 T cells. In functional terms, KIR inhibited lysis of MHC class I-positive tumor B cell lines by V gamma 9V delta 2 cytotoxic T lymphocytes (CTL) and raised their threshold of activation by microbial antigens presented by MHC class I-positive cells. Furthermore, masking KIR or MHC class I molecules revealed a TCR-dependent recognition by V gamma 9V delta 2 CTL of ligands expressed by activated T lymphocytes, including the effector cells themselves. Taken together, these results suggest a general implication of V gamma 9V delta 2 T cells in immune response regulation and a central role of KIR in the control of self-reactive gamma delta CTL.  相似文献   

2.
Peripheral blood gamma delta T cells from non-exposed individuals respond to antigens of the malaria parasite, Plasmodium falciparum, in vitro. This response, largely caused by T cells bearing the V gamma 9+ chain of the T-cell receptor, is stimulated by components of the parasite expressed on the schizont stage and released at schizont rupture. The response of V gamma 9+ T cells to parasite components is inhibited by antibodies to major histocompatibility complex (MHC) class I and class II. However, the inhibition by anti-MHC class II antibodies can be overcome by the addition of interleukin-2 (IL-2) to the cultures, suggesting that gamma delta T cells themselves do not recognize MHC class II molecules but require an MHC class II-dependent response taking place in the culture. In contrast, the inhibition by anti-class I antibodies cannot be reversed by addition of IL-2. Since an accompanying CD4+ T-cell response occurred in peripheral blood mononuclear cells cultured with P falciparum antigens, it was considered that these cells provide the cytokines necessary for the subsequent activation and expansion of V gamma 9+ T cells recognizing components of the parasite and MHC class I molecules. This was confirmed by reconstituting the response of enriched gamma delta T cells to P falciparum schizont extract by addition of purified CD4+ T cells.  相似文献   

3.
Endogenous superantigens encoded by mouse mammary tumor viruses associate with MHC class II and interact with T cells bearing particular V beta gene segments. H-2E is more efficient at presentation than H-2A, indeed Aq has not been shown to be capable of presenting endogenous superantigens. Atypically, the superantigen vSAG-3 encoded by Mtv-3 is presented efficiently in non-obese diabetic (H-2g7) mice by H-2A; we have examined the independent contributions of vSAG-3 and Ag7 to this process. Ag7 was not found to have a more general ability to efficiently present endogenous superantigens other than Mtv-3. Examination of Mtv-3-mediated thymic deletion of V beta 3+ thymocytes in the presence of H-2q additionally demonstrated the efficient presentation of vSAG-3 by Aq. Interaction of vSAG-3 with Aq and Ag7 is likely to reflect the unique sequence of Mtv-3 within the second polymorphic region previously implicated in MHC class II binding. The demonstration that mouse endogenous superantigens can be presented by a wider range of MHC haplotypes than previously thought is further evidence for their immunological impact on the mouse population.  相似文献   

4.
The discovery of the superantigens (SAgs) offered new insights on the interaction between microorganisms and the host immune system. Associated to Major Histocompatibility Complex (MHC) class II molecules, SAgs bind to the variable domain of the beta chain (V beta) of the TCR alpha beta engaged in the family specificity of lymphocytes. Therefore, these molecules are able to activate a high number of T lymphocytes as well as surface MHC class II bearing cells, leading to an overriding release of cytokines and inflammatory mediators, which have been related to their toxic effects. Endogenous SAgs are encoded by murine tumor proviruses (Mtv) which are integrated in the genome of mice. Bacteria and viruses produce exogenous SAgs and those related to food poisoning have been widely studied. The presence of parasite SAgs is still unclear and further studies are required to establish their existence and effects on the corresponding infections.  相似文献   

5.
The in vitro response of unprimed rat T cells to retroviral and bacterial superantigens (SAg) was analyzed with TCR V beta 8.2-, 8.5-, 10-, and 16-specific mAbs. Specific stimulation of V beta 8.2 and 8.5 CD4 cells was observed in the response to Mls1a, the retroviral SAg encoded by integrated provirus Mtv-7 (Mtv-7 SAg), which was presented by mouse B cells or mouse fibroblasts transfected with DR1 genes and the Mtv-7 SAg. Additionally, a strong response of V beta 16 CD4 cells to an as yet unidentified mouse SAg was found. Only some of the bacterial SAg known to stimulate mouse and human T cells also activated rat lymph node cells. SEA, SEE, and TSST-1 stimulated rat T cells well; SEB, SEC1, and SED did not. This defect was apparently a result of weak binding to rat MHC class II molecules because presentation by human MHC class II molecules restored T cell activation. Under these conditions, SEB stimulated V beta 8.2+ and 8.5+ CD4 and CD8 cells from Lewis rats. A comparison of several rat strains revealed an unresponsiveness to SEB or Mtv-7 SAg for V beta 8.2 cells from F344 and DA rats. Determination of the nucleotide sequences of the Tcrb-V8.2 of these strains revealed differences between SAg-responsive and SAg-unresponsive Tcrb-V8.2 in seven amino acids, four of them located in the putative SAg contact site. The significance of these findings for the evolution of TCR-SAg interactions is discussed.  相似文献   

6.
BACKGROUND & AIMS: The intestinal epithelial compartment is populated by CD8(+) alpha beta and gamma delta intraepithelial lymphocytes (IELs), which monitor the integrity of the epithelial barrier. alpha beta IELs are activated by peptide antigens presented by class I major histocompatibility complex (MHC) molecules, but it is unclear how gamma delta IELs are activated. METHODS: G8 T-cell receptor (TCR) gamma delta transgenic (Tg) mice (specific for the class I MHC alloantigen, T22/10(b)) were crossed to class I MHC-deficient beta2-microglobulin-knockout (beta2m degrees) mice, and Tg+ IELs were examined for relative yields and surface and functional phenotype. RESULTS: Evidence for class I MHC-induced activation of Tg+ IELs was supported by the detection of 4-fold greater numbers of Tg+ IELs in G8 x beta2m+ mice that proliferated at 15-fold higher levels than IELs from G8 x beta2m degrees mice. However, expression of CD69, production of cytokine (interleukin 2 and interferon gamma), and detection of cytolytic function for IELs in G8 x beta2m degrees mice suggested that class I MHC was not required for gamma delta IEL development or maturation. CONCLUSIONS: These results suggest that CD8(+) TCR gamma delta IELs do not require class I MHC for development but support the notion that antigens presented by class I MHC molecules are involved in the peripheral expansion and differentiation of this subset.  相似文献   

7.
HLA-DO is a non-classical MHC class II molecule presumed to play a specialized role in the antigen processing pathway. We have modeled the HLA-DO beta-chain and found its overall structure compatible with the one of DR beta. Functional studies further highlighted the similarity between these beta-chains of the class II family of proteins. Indeed, a mixed heterodimer composed of the DR alpha and a chimeric DO beta-chains presented bacterial superantigens to T cells and was shown to interact with CD4. The implications of such structural conservation for the in vivo functions of HLA-DO are discussed.  相似文献   

8.
Major histocompatibility complex (MHC) class II molecules bind to numerous peptides and display these on the cell surface for T cell recognition. In a given immune response, receptors on T cells recognize antigenic peptides that are a minor population of MHC class II-bound peptides. To control which peptides are presented to T cells, it may be desirable to use recombinant MHC molecules with covalently bound antigenic peptides. To study T cell responses to such homogeneous peptide-MHC complexes, we engineered an HLA-DR1 cDNA coding for influenza hemagglutinin, influenza matrix, or HIV p24 gag peptides covalently attached via a peptide spacer to the N terminus of the DR1 beta chain. Co-transfection with DR alpha cDNA into mouse L cells resulted in surface expression of HLA-DR1 molecules that reacted with monoclonal antibodies (mAb) specific for correctly folded HLA-DR epitopes. This suggested that the spacer and peptide did not alter expression or folding of the molecule. We then engineered an additional peptide spacer between the C terminus of a truncated beta chain (without transmembrane or cytoplasmic domains) and the N terminus of full-length DR alpha chain. Transfection of this cDNA into mouse L cells resulted in surface expression of the entire covalently linked heterotrimer of peptide, beta chain, and alpha chain with the expected molecular mass of approximately 66 kDa. These single-chain HLA-DR1 molecules reacted with mAb specific for correctly folded HLA-DR epitopes, and identified one mAb with [MHC + peptide] specificity. Affinity-purified soluble secreted single-chain molecules with truncated alpha chain moved in electrophoresis as compact class II MHC dimers. Cell surface two-chain or single-chain HLA-DR1 molecules with a covalent HA peptide stimulated HLA-DR1-restricted HA-specific T cells. They were immunogenic in vitro for peripheral blood mononuclear cells. The two-chain and single-chain HLA-DR1 molecules with covalent HA peptide had reduced binding for the bacterial superantigens staphylococcal enterotoxin A and B and almost no binding for toxic shock syndrome toxin-1. The unique properties of these engineered HLA-DR1 molecules may facilitate our understanding of the complex nature of antigen recognition and aid in the development of novel vaccines with reduced superantigen binding.  相似文献   

9.
In most scientific investigations, the study of mechanism follows the study of function. For example, alpha beta T cells were shown to be important mediators of immunity before the interaction between the T cell receptor (TCR) and peptide-MHC complexes was understood. However, sometimes the study of function follows from the study of mechanism. Research of gamma delta T cell receptors falls into this category. The gamma chain of the TCR was first cloned in 1984, which then led to the discovery of gamma delta T cells in 1985. Since then, research has focused on understanding ligands of the gamma delta TCR with the hope of better understanding the function of gamma delta T cells. An initial assumption was that gamma delta T cells, like alpha beta T cells, recognize peptides bound to MHC molecules; however, recent data indicate that gamma delta T cells are not biased towards MHC recognition in the same way as alpha beta T cells. Although there are intriguing new insights, the specificity and function of gamma delta T cells remains a mystery.  相似文献   

10.
Considerable progress has been made in the field of major histocompatibility complex (MHC) class II-restricted antigen presentation. The analysis of mutant cell lines defective in antigen presentation revealed a central role for the nonclassical MHC class II molecule HLA-DM. Cell biological and biochemical characterization of HLA-DM provided deeper insight into the molecular mechanisms underlying the loading process: HLA-DM accumulates in acidic compartments, where it stabilizes classical class II molecules until a high-stability ligand occupies the class II peptide binding groove. Thus, HLA-DM prevents empty alpha beta dimers from functional inactivation at low endosomal/lysosomal pH in a chaperone-like fashion. In the presence of peptide ligands, HLA-DM acts as a catalyst for peptide loading by releasing CLIP, the residual invariant chain-derived fragment by which the invariant chain is associated with the class II molecules during transport from the endoplasmic reticulum to the loading compartments. Finally, there is accumulating evidence that HLA-DM functions as a peptide editor that removes low-stability ligands, thereby skewing the class II peptide repertoire toward high-stability alpha beta: peptide complexes presentable to T cells.  相似文献   

11.
This paper examines functional properties of human Vgamma9/Vdelta2 T cell lines and clones generated by in vitro culture with synthetic and natural (mycobacterial) phosphoantigenic molecules. It confirms the broad reactivity of Vgamma9/Vdelta2 T cell lines and clones toward phosphoantigens. Optimal recognition of phosphoantigens by Vgamma9/Vdelta2 T cells required accessory cells to occur, but did not require specialized antigen presenting cells. However, species origin of the APC was irrelevant as proliferation of Vgamma9/Vdelta2 T cells occurred in the presence of syngeneic, allogeneic or xenogeneic APC and was not restricted to APC of particular tissue origin. Moreover antigen uptake and processing was not required for recognition by Vgamma9/ Vdelta2 cells, as evidenced by the ability of fixed APCs to present phosphoantigens. Similarly, the expression of classical MHC class I and class II molecules was not required for phosphoantigen recognition by gammadelta T cells. However, gammadelta T cell clones responded to stimulation by several cytokines including IL-12, IFNgamma and TNFalpha. Finally, Vgamma9/Vdelta2 T cell clones preferentially produced both IFN-gamma and IL-4 in response to PHA or TUBAg stimulation, revealing that a Th0 pattern of cytokine production is frequent among these cells.  相似文献   

12.
The proportion of CD4- CD8- double-negative (DN) alpha beta T cells is increased both in the thymus and in peripheral lymphoid organs of TCR alpha chain-transgenic mice. In this report we have characterized this T cell population to elucidate its relationship to alpha beta and gamma delta T cells. We show that the transgenic DN cells are phenotypically similar to gamma delta T cells but distinct from DN NK T cells. The precursors of DN cells have neither rearranged endogenous TCR alpha genes nor been negatively selected by the MIsa antigen, suggesting that they originate from a differentiation stage before the onset of TCR alpha chain rearrangements and CD4/CD8 gene expression. Neither in-frame V delta D delta J delta nor V gamma J gamma rearrangements are over-represented in this population. However, since peripheral gamma delta T cells with functional TCR beta gene rearrangements have been depleted in the transgenics, we propose that the transgenic DN population, at least partially, originates from the precursors of those cells. The present data lend support to the view that maturation signals to gamma delta lineage-committed precursors can be delivered via TCR alpha beta heterodimers.  相似文献   

13.
The inoculation into mice of genetically engineered tumour cells that secrete IL-2 or IFN gamma results in rejection, while unmodified parental tumour cells grow progressively. In vivo studies demonstrated synergy between IL-2 and IFN gamma leading to the rejection of the transduced tumour cells. IL-2 is required for T cell proliferation and differentiation. IFN gamma induced the upregulation of MHC class I molecules that present peptides to CD8+ T cells. Furthermore, IFN gamma can correct defects in antigen processing. Thus, for T cells, IL-2/IFN gamma-secreting double cytokine tumour cell vaccines might serve as class I+ peptide/antigen presenting depots for developing effector cells. In contrast to T cells, NK cells exert spontaneous killing and kill class I+ targets less well than those that are class I-. For this reason, they may actually have a detrimental effect by destroying a class I+ tumour cell vaccine before adequate T cell stimulation occurs. Based upon this rationale, we tested the hypothesis that an unrecognised benefit of increased class I expression by tumour cells in response to IFN gamma secretion would be to enable cytokine-secreting vaccine cells to resist destruction by NK cells. Our results demonstrated that T cells recognised tumour cells secreting IFN gamma better than those secreting IL-2. NK cells, in contrast, were inhibited by tumour cells that secreted IFN gamma, but not by those that secreted IL-2. The findings suggest that, in addition to upregulating adhesion molecules, MHC molecules, and correcting defects in antigen presentation pathways, IFN gamma secretion may protect tumour cell vaccines from early NK-mediated destruction, keeping them available for T cell priming.  相似文献   

14.
T cell receptors on CD4(+) lymphocytes recognize antigen-derived peptides presented by major histocompatibility complex (MHC) class II molecules. A very limited set of peptides among those that may potentially bind MHC class II is actually presented to T lymphocytes. We here examine the role of two receptors mediating antigen internalization by antigen presenting cells, type IIb2 and type III receptors for IgG (FcgammaRIIb2 and FcgammaRIII, respectively), in the selection of peptides for presentation to T lymphocytes. B lymphoma cells expressing recombinant FcgammaRIIb2 or FcgammaRIII were used to assess the presentation of several epitopes from two different antigens. 4 out of the 11 epitopes tested were efficiently presented after antigen internalization through FcgammaRIIb2 and FcgammaRIII. In contrast, the 7 other epitopes were efficiently presented only when antigens were internalized through FcgammaRIII, but not through FcgammaRIIb2. The capacity to present these latter epitopes was transferred to a tail-less FcgammaRIIb2 by addition of the FcgammaRIII-associated gamma chain cytoplasmic tail. Mutation of a single leucine residue at position 35 of the gamma chain cytoplasmic tail resulted in the selective loss of presentation of these epitopes. Therefore, the nature of the receptor that mediates internalization determines the selection of epitopes presented to T lymphocytes within single protein antigens.  相似文献   

15.
Although the identity of T cells involved in the protection against Mycobacterium tuberculosis (Mtb) in humans remain unknown, patients with pulmonary tuberculosis (TB) have reduced numbers of Mtb-reactive, V gamma 9+/V delta 2+ T cells in their blood and lungs. Here we have determined whether this gamma deltaT loss is a consequence of Mtb Ag-mediated activation-induced cell death (AICD). Using a DNA polymerase-mediated dUTP nick translation labeling assay, 5% or less of freshly isolated CD4+ alpha beta or gamma delta T cells from normal healthy individuals and TB patients were apoptotic. However, during culture Mtb Ags induced apoptosis in a large proportion of V gamma 9+V delta 2+ peripheral blood T cells from healthy subjects (30-45%) and TB patients (55-68%); this was increased further in the presence of IL-2. By contrast, anti-CD3 did not induce any significant level of apoptosis in gamma delta T cells from healthy subjects or TB patients. Mtb Ag stimulation rapidly induced Fas and Fas ligand (FasL) expression by gamma delta T cells, and in the presence of metalloproteinase-inhibitors >70% of gamma delta T cells were FasL+. Blockade of Fas-FasL interactions reduced the level of Mtb-mediated gamma delta T cell apoptosis by 75 to 80%. Collectively, these findings demonstrate that Mtb-reactive gamma delta T cells are more susceptible to AICD and that the Fas-FasL pathways of apoptosis is involved. AICD of gamma delta T cells, therefore, provides an explanation for the loss of Mtb-reactive T cells during mycobacterial infection.  相似文献   

16.
17.
We have previously reported that T lymphocytes proliferating in vitro to the hapten trinitrochlorobenzene (TNCB) exhibit a very restricted V beta gene usage and response to TNCB is limited to T-cell receptors (TCR) composed of V beta 8.2 in combination with V alpha 3.2, V alpha 8 and V alpha 10. This paper investigates the role played by T lymphocytes expressing the V beta 8.2 gene segment in the contact sensitivity (CS) reaction to TNCB in the intact mouse and in its passive transfer into naive recipient mice. Mice injected with monoclonal antibodies to V beta 8 are unable to develop CS upon immunization with TNCB and 4-day TNCB-immune lymph node cells from mice that had been depleted in vivo or in vitro of V beta 8+ T lymphocytes fail to transfer CS. However, when separated V beta 8+ and V beta 8- cells were used for passive transfer, it was found that V beta 8+ T lymphocytes failed to transfer CS when given alone to recipient mice and a V beta 8- population was absolutely required. Further analysis revealed that within the V beta 8- population, T lymphocytes expressing the gamma delta TCR were fundamental to allow transfer of the CS reaction. These gamma delta cells were found to be antigen non-specific, genetically unrestricted and to rearrange the V gamma 3 gene segment. This indicates that transfer of the CS reaction requires cross-talk between V beta 8+ and gamma delta+ T lymphocytes, thus confirming our previous results obtained using TNCB-specific T-cell lines. Time-course experiments showed that V beta 8+ lymphocytes taken 4-24 days after immunization with TNCB were able to proliferate and produce interleukin-2 (IL-2) in response to the specific antigen in vitro. Similar time-course experiments were then undertaken using the passive transfer of the CS reaction system. The results obtained confirm that TNCB-specific V beta 8+ T lymphocytes are present in the lymph nodes of immunized mice from day 4 to day 24, and reveal that gamma delta+ T lymphocytes are active for a very short period of time, i.e. days 4 and 5 after immunization. In fact, TNCB-specific V beta 8+ cells are able to transfer CS when taken 4-24 days after immunization, providing the accompanying V beta 8- or gamma delta+ T lymphocyte are obtained 4 days after immunization. In contrast, injection of V beta 8+ T lymphocytes together with V beta 8- or gamma delta+ T lymphocytes that had been taken 2 or 6 days after immunization, failed to transfer significant CS into recipient mice. Taken together, our results confirm that cross-talk between V beta 8+ and gamma delta+ T lymphocytes is necessary for full development of the CS reaction and may explain why the CS reaction in the intact mouse lasts up to 21 days after immunization while the ability of immune lymph node cells to transfer CS is limited to days 4 and 5 after immunization.  相似文献   

18.
Processing of exogenous hepatitis B surface antigen (HBsAg) particles in an endolysosomal compartment generates peptides that bind to the major histocompatibility complex (MHC) class I molecule Ld and are presented to CD8+ cytotoxic T lymphocytes. Surface-associated 'empty' MHC class I molecules associated neither with peptide, nor with beta2-microglobulin (beta2m) are involved in this alternative processing pathway of exogenous antigen for MHC class I-restricted peptide presentation. Here, we demonstrate that internalization of exogenous beta2m is required for endolysosomal generation of presentation-competent, trimeric Ld molecules in cells pulsed with exogenous HBsAg. These data point to a role of endocytosed exogenous beta2m in the endolysosomal assembly of MHC class I molecules that present peptides from endosomally processed, exogenous antigen.  相似文献   

19.
Stimulation of T lymphocytes through the T cell receptor in the absence of costimulatory signal(s) induces a state of unresponsiveness to subsequent antigen presentation. We have employed solubilized complexes consisting of rat class II MHC molecules containing an immunodominant peptide of the acetylcholine receptor (AChR alpha 100-116) to induce unresponsiveness in the autoreactive T lymphocytes mediating an animal model of myasthenia gravis. In vitro incubation of rat T cell lines specific for peptide AChR alpha 100-116 with solubilized complexes of MHC II and AChR alpha 100-116 (MHC II:AChR alpha 100-116) rendered the T cells unresponsive to subsequent stimulation by antigen presenting cells and the peptide. T cell lines with a broader specificity to the entire AChR protein pentamer had an 81% reduction in proliferation to AChR following a preincubation with solubilized MHC II:AChR alpha 100-116. Treatment with the solubilized MHC II:AChR alpha 100-116 induced phosphatidylinositol 4,5-bisphosphate hydrolysis, an early signalling event associated with binding to the TCR. Rats primed with AChR and injected intravenously with MHC II:AChR alpha 100-116 had reduced in vitro T cell proliferation to the AChR alpha 100-116 peptide and to whole AChR. Solubilized MHC II:AChR alpha 100-116 injected i.v. into rats exhibiting serological clinical symptoms of experimental autoimmune myasthenia gravis (EAMG) prevented death in 67% of the treated animals, compared to a 0-20% survival rate in all other control groups. These results demonstrate that solubilized MHC II complexed with an immunodominant autoantigenic peptide is tolerogenic and improves the survival rate of rats with EAMG, suggesting the basis for an antigen-specific therapy in autoimmune diseases such as MG.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号