共查询到17条相似文献,搜索用时 57 毫秒
1.
2.
3.
4.
5.
7.
小波支持向量机在结构损伤识别中的应用研究 总被引:1,自引:1,他引:1
基于小波框架理论和支持向量核函数的条件,引入非线性小波基函数构造支持向量机(SVM)的核函数.得到一种具有较强泛化能力的紧致型小波支持向量机。对结构在环境脉动下的反应信号进行小波包分解,利用“能量一损伤状态”的特征提取方法得到特征向量,并作为紧致型小波支持向量机的输人进行训练和分类检验,提出了一种基于完全小波支持向量机的结构损伤识别方法。以一空间单层网壳结构为检测和诊断对象,用该方法对结构的损伤位置和程度进行识另口和分类具有较高的精度,同时该方法具有面向工程实际应用、成本低和分析简便等特点。 相似文献
8.
基于小波包分解和支持向量机的机械故障诊断方法 总被引:12,自引:2,他引:12
提出应用小波包分解和支持向量机进行机械故障诊断的方法。该方法将振动信号小波包分解后的频带能量作为特征向量,输入到由多个支持向量机构成的多故障分类器中进行故障识别和分类。试验结果表明,与神经网络相比,采用支持向量机进行故障诊断可以获得更高的诊断精度,表明该方法是有效的、可行的。 相似文献
9.
10.
11.
为有效监测刀具在机床中可能出现的故障,提出基于经验模态分解(EMD)和支持向量机(SVM)的一种故障诊断方法。首先用EMD方法将振动信号分解为有限个固有模态函数(IMF),并选取能量较大的IMF进行标量量化得到特征向量,最后将其输入SVM进行测试进而判断故障类型。分析结果表明,基于EMD-SVM的刀具故障方法能够更有效地识别刀具故障状态。 相似文献
12.
针对齿轮箱故障诊断中存在的早期非平稳微弱故障信号特征提取困难,易受强背景噪声干扰,故障诊断精度较低等问题,提出了一种基于变分模态分解(Variational Mode Decomposition,VMD)和深度支持向量机(Deep Support Vector Machine,DSVM)的齿轮箱故障诊断方法。首先,利用VMD将原始振动信号分解成若干个频率尺度的本征模态(Intrinsic Mode Function,IMF)分量,并根据峭度最大准则选取IMF分量对信号进行重构;构建多层支持向量机结构,在输入层利用支持向量机对信号进行训练,学习信号的浅层特征,利用"特征提取公式"生成样本新的表示,并作为隐藏层的输入,逐层利用深层SVM对新样本训练并学习信号的深层特征,最终由输出层输出诊断结果。最后,通过齿轮箱故障诊断实验验证了该方法的有效性。 相似文献
13.
小波包分析技术能有效的在宽频带范围内提取振动信号的有用成分,便于实现变速箱的自动诊断。本文研究了小波神经网络在变速箱自动诊断应用中的几个关键问题,提出了相应的解决方法,并设计了拖拉机变速箱自动故障诊断系统。 相似文献
14.
单一支持向量机在轴承齿轮故障诊断中精度较低,为了提高支持向量机在轴承齿轮故障诊断中的精度,对支持向量机的样本特征提取方法以及支持向量机参数优化的方法进行了研究。首先,通过核主成分分析方法构造支持向量机的输入样本,可以减少数据间的冗余,提取数据的高维信息;其次,通过粒子群优化算法优化支持向量机核函数参数和惩罚因子;最后,使用优化后的支持向量机模型进行故障诊断。通过实际轴承齿轮故障诊断对比实验,结果表明,所提方法相比一般的支持向量机诊断方法诊断精度大幅提高,验证了该混合智能诊断方法的有效性和优势。 相似文献
15.
基于支持向量机的航空发动机故障诊断 总被引:8,自引:0,他引:8
支持向量机学习方法以结构风险最小化原则取代传统机器学习方法中的经验风险最小化原则,在有限样本的学习中显示出优异的性能。本文将这一新的统计学习方法应用到航空发动机故障诊断的研究中,并通过某型航空发动机故障诊断的实验结果表明了本文方法的有效性。 相似文献
16.