首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 57 毫秒
1.
简要介绍了支持向量机和小波包分析理论,在此基础上提出将故障信号经小波包分解后各子频带信号能量与信号总能量之比作为故障特征并构造特征向量作为SVM分类器的输入,实现故障状态的诊断。设计实验进行验证,在转子实验台上测得滚动轴承各种状态下的振动信号,经小波包分解后计算各子频带相对能量作为实验数据。将数据分为训练样本较多和训练样本较少两组数据集,分别使用四种不同核函数和一对一与一对多两种算法进行故障状态分类计算,以了解其对SVM分类性能的影响,最后与BP神经网络分类结果比较,对比SVM分类器与传统故障诊断方法的优缺点。  相似文献   

2.
基于小波包和支持向量机的齿轮故障诊断   总被引:2,自引:0,他引:2  
提出了一种基于小波包和支持向量机的齿轮故障诊断方法,并介绍了该方法的原理和算法。利用获得的矿井提升机减速箱齿轮数据建立了多级故障分类器,通过对样本的分类输出检验,验证了该故障诊断方法的可行性。  相似文献   

3.
4.
为了对发动机气门间隙进行故障诊断,在对振动信号进行采集和预处理的基础上,运用小波包频带能量分解技术提取发动机故障的特征向量,以此作为支持向量机分类器(SVM)的训练样本,用经训练的SVM多分类器对发动机不同故障进行自动识别和诊断,实现了信号特征向量提取与故障模式识别的有机结合。实验结果表明,该方法能在机械故障样本少的情况下准确的识别和诊断出发动机气门间隙的故障类型,具有实际的工程应用价值。  相似文献   

5.
基于支持向量机的往复泵泵阀故障诊断方法   总被引:6,自引:2,他引:6  
提出一种基于支持向量机的往复泵泵阀故障诊断方法。该方法将泵阀振动信号的小波包变换系数作为特征向量,输入到由多个支持向量机构造的一个多值分类器中进行故障模式分类。试验结果表明,该方法不仅可以对发生故障的单个泵阀进行诊断,而且还能对同时发生故障的多个泵阀进行诊断。与常用的人工神经网络方法比较,该诊断方法具有更好的有效性、鲁棒性和推广性,在机械设备故障诊断中有很好的应用前景。  相似文献   

6.
7.
小波支持向量机在结构损伤识别中的应用研究   总被引:1,自引:1,他引:1  
基于小波框架理论和支持向量核函数的条件,引入非线性小波基函数构造支持向量机(SVM)的核函数.得到一种具有较强泛化能力的紧致型小波支持向量机。对结构在环境脉动下的反应信号进行小波包分解,利用“能量一损伤状态”的特征提取方法得到特征向量,并作为紧致型小波支持向量机的输人进行训练和分类检验,提出了一种基于完全小波支持向量机的结构损伤识别方法。以一空间单层网壳结构为检测和诊断对象,用该方法对结构的损伤位置和程度进行识另口和分类具有较高的精度,同时该方法具有面向工程实际应用、成本低和分析简便等特点。  相似文献   

8.
基于小波包分解和支持向量机的机械故障诊断方法   总被引:12,自引:2,他引:12  
提出应用小波包分解和支持向量机进行机械故障诊断的方法。该方法将振动信号小波包分解后的频带能量作为特征向量,输入到由多个支持向量机构成的多故障分类器中进行故障识别和分类。试验结果表明,与神经网络相比,采用支持向量机进行故障诊断可以获得更高的诊断精度,表明该方法是有效的、可行的。  相似文献   

9.
免疫支持向量机方法在液压泵故障诊断中的应用   总被引:5,自引:0,他引:5       下载免费PDF全文
针对在液压泵故障诊断中故障样本难以获得的问题,融合人工免疫系统中的实值否定选择算法和支持向量机算法提出了一种混合的故障诊断方法。在该混合方法中使用算法产生非己集合(故障样本),将其作为算法的输入进行训练,解决了难以获得故障样本的难题。应用小波分析完成液压泵端盖振动信号的消噪及特征提取。最后用柱塞泵脱靴故障样本进行诊断,正确率可达90%,验证了混合诊断方法的有效性。  相似文献   

10.
遗传算法和支持向量机在机械故障诊断中的应用研究   总被引:2,自引:1,他引:2  
王凯  张永祥  李军 《机械强度》2008,30(3):349-353
提出一种基于遗传算法和支持向量机的故障诊断方法,利用遗传算法对故障特征集和支持向量机的参数同时进行优化,然后把优化选择的故障特征输入支持向量机进行故障识别.既剔除了故障特征的冗余性、减少了计算量,又解决了支持向量机的参数难以选择等问题.诊断实例表明,该方法能利用较少的故障特征得到较高的诊断精度.  相似文献   

11.
贺彬  刘泉 《工具技术》2017,51(1):95-97
为有效监测刀具在机床中可能出现的故障,提出基于经验模态分解(EMD)和支持向量机(SVM)的一种故障诊断方法。首先用EMD方法将振动信号分解为有限个固有模态函数(IMF),并选取能量较大的IMF进行标量量化得到特征向量,最后将其输入SVM进行测试进而判断故障类型。分析结果表明,基于EMD-SVM的刀具故障方法能够更有效地识别刀具故障状态。  相似文献   

12.
于磊  陈森  张瑞  李可  宿磊 《机械传动》2019,43(8):150-156
针对齿轮箱故障诊断中存在的早期非平稳微弱故障信号特征提取困难,易受强背景噪声干扰,故障诊断精度较低等问题,提出了一种基于变分模态分解(Variational Mode Decomposition,VMD)和深度支持向量机(Deep Support Vector Machine,DSVM)的齿轮箱故障诊断方法。首先,利用VMD将原始振动信号分解成若干个频率尺度的本征模态(Intrinsic Mode Function,IMF)分量,并根据峭度最大准则选取IMF分量对信号进行重构;构建多层支持向量机结构,在输入层利用支持向量机对信号进行训练,学习信号的浅层特征,利用"特征提取公式"生成样本新的表示,并作为隐藏层的输入,逐层利用深层SVM对新样本训练并学习信号的深层特征,最终由输出层输出诊断结果。最后,通过齿轮箱故障诊断实验验证了该方法的有效性。  相似文献   

13.
小波包分析技术能有效的在宽频带范围内提取振动信号的有用成分,便于实现变速箱的自动诊断。本文研究了小波神经网络在变速箱自动诊断应用中的几个关键问题,提出了相应的解决方法,并设计了拖拉机变速箱自动故障诊断系统。  相似文献   

14.
单一支持向量机在轴承齿轮故障诊断中精度较低,为了提高支持向量机在轴承齿轮故障诊断中的精度,对支持向量机的样本特征提取方法以及支持向量机参数优化的方法进行了研究。首先,通过核主成分分析方法构造支持向量机的输入样本,可以减少数据间的冗余,提取数据的高维信息;其次,通过粒子群优化算法优化支持向量机核函数参数和惩罚因子;最后,使用优化后的支持向量机模型进行故障诊断。通过实际轴承齿轮故障诊断对比实验,结果表明,所提方法相比一般的支持向量机诊断方法诊断精度大幅提高,验证了该混合智能诊断方法的有效性和优势。  相似文献   

15.
基于支持向量机的航空发动机故障诊断   总被引:8,自引:0,他引:8  
支持向量机学习方法以结构风险最小化原则取代传统机器学习方法中的经验风险最小化原则,在有限样本的学习中显示出优异的性能。本文将这一新的统计学习方法应用到航空发动机故障诊断的研究中,并通过某型航空发动机故障诊断的实验结果表明了本文方法的有效性。  相似文献   

16.
基于支持矢量聚类的机械故障诊断   总被引:2,自引:1,他引:2  
针对无监督的支持矢量聚类方法由于样本类别数量未知带来的模型参数难以选择的问题,提出有监督的支持矢量聚类方法,并应用到机械故障诊断中.该方法首先以聚类区域个数及支持矢量个数作为模型参数的选择准则,以支持矢量为核估计样本分布的概率密度,并根据概率密度估计值选择不同聚类区域的类别代表样本,而后引入k近邻法实现对不同故障的分类.对测试样本的分类结果表明了该方法的有效性.  相似文献   

17.
针对发动机曲轴轴承极易磨损,导致发动机出现故障的问题,提出了一种基于近似熵与支持向量机相结合的故障诊断方法。发动机在工作过程中,早期故障特征信号微弱。基于此,引入近似熵算法,分别模拟发动机曲轴轴承4种磨损状态,测取各状态下多测点的振动信号样本,计算样本近似熵值,构建了不同状态近似熵故障特征向量。结合支持向量机算法,构造支持向量机故障分类模型,将近似熵特征量带入其中进行训练与测试,测试结果准确率达到97.5%,并与普遍使用的BP神经网络诊断方法进行了对比,结果表明该方法具有更高的诊断识别率,是一种有效且准确率较高的在线诊断方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号