首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
有限元线法(FEMOL)是一种优良的半解析、半离散方法,可将其比拟为广义一维问题,进而将一维有限元中单元能量投影(EEP)法及相应的自适应求解技术引入,使FEMOL由半解析方法变为完全解析、数值精确的方法。在对二维线性问题成功地实现了自适应FEMOL分析的基础上,该文进一步报道FEMOL自适应方法在二维自由振动问题中的成功应用和最新进展。该文简要介绍了FEMOL自适应分析二维振动问题的求解策略和技术,整套方法思路清晰、算法严谨、高效可靠,可以得到满足精度要求的自振频率和按最大模度量满足用户事先给定误差限的振型,均为数值精确解。该文给出的数值算例表明所提出的算法具有高效、稳定、通用、可靠的优良特性。  相似文献   

2.
对于自由振动问题,基于单元能量投影(element energy projection, EEP)技术,对频率和模态同时进行误差控制的自适应有限元分析已建立,并被证明可靠且高效。在实际应用中,也存在另一类需求,即只需保证频率的精度,而并不关心模态误差大小。该研究提出了频率超收敛计算方案,继而建立了整体频率误差和局部模态误差的转换关系,从而在整体上以频率误差估计控制算法停机,在局部上以模态误差估计驱动网格更新,最终建立了以频率误差控制为目标的自由振动问题自适应有限元分析策略。该方法的有效性在二阶Sturm-Liouville问题及弹性薄膜自由振动问题上得到了应用验证。  相似文献   

3.
有限元后处理超收敛计算的EEP(单元能量投影)法以及基于该法的自适应有限元分析已在一维变分不等式问题的求解中取得显著成功。以此为基础,该文对二维变分不等式问题成功地实现了自适应有限元分析。该文提出二维区域二分法和二维C 检验技术,有效地提升了松弛迭代的收敛速率,进而应用EEP 超收敛公式计算超收敛解答,用其检验误差并指导网格细分。该文给出的典型数值算例表明该文算法高效、稳定、精确,解答可逐点以最大模度量满足精度要求,堪称为数值精确解。  相似文献   

4.
有限元线法(FEMOL)是一种优良的半解析、半离散方法,将其比拟为广义一维问题,遂可将一维有限元中十分成功的单元能量投影(EEP)超收敛算法以及基于该法的自适应求解方法推广到二维有限元线法分析中,至今已在二维Poisson方程和弹性力学平面问题中取得了令人满意的进展.该文旨在报道这些进展和成果.该文简要介绍了线法的EE...  相似文献   

5.
二维有限元线法(FEMOL)的自适应分析已经取得成功,而且表现出色.然而,为了进一步推广应用领域,提高效率和效能,将其先进的自适应技术在最常用的有限元法(FEM)当中实现,便成为必然追求.经过近年的研究,已经基本实现了二维自适应分析技术从FEMOL到FEM的跨越,该文意在对这方面的进展作一简要综述与报道.从FEMOL出...  相似文献   

6.
结构工程中的弹性薄膜接触和杆件弹塑性扭转等问题是典型的变分不等式问题,对其高效精确求解,特别是满足给定精度要求下的自适应求解,是挑战性课题。该文作者新近成功实现了一维变分不等式问题的自适应有限元分析,该文对此进展作一报道。对于变分不等式的有限元求解,该文提出区域二分法和C检验技术,极大提升了松弛迭代的收敛速度,一般4次~5次线性解即可得到收敛的有限元解答,进而采用作者提出的EEP(单元能量投影)超收敛公式计算超收敛解答,用其检验误差并指导网格细分,逐步得到堪称为数值精确解的解答,亦即得到按照最大模度量逐点满足精度要求的解答。该文给出的数值算例表明所提出的算法具有高效、可靠、精确的优良特性。  相似文献   

7.
基于新近提出的一维有限元后处理超收敛算法——单元能量投影(EEP)法,将有限元自适应求解问题转化为对超收敛解答的自适应分段多项式插值问题,一步便可获得最优的有限元网格划分,在该网格上再次进行有限元计算,即可获得满足用户给定的误差限的有限元解答。该法简单实用、快速高效,是一个颇具优势和潜力的自适应方法。文中以二阶常微分方程模型问题为例,对该法的形成思路和实施策略做一介绍,并给出有代表性的数值算例用以展示该法的优良性能和效果。  相似文献   

8.
二维有限元法(FEM)的超收敛计算,借助有限元线法(FEMOL)作为桥梁,分两步采用单元能量投影(EEP)法导出超收敛公式,初步形成“逐维离散、逐维恢复”的方案。然而这一思路直接应用于三维问题却遇到了困扰:一维问题的EEP解(位移和导数)均可达到相同的超收敛阶,而二维问题却难以做到。研究发现,为了得到三维问题的EEP超收敛位移,只需提供二维问题最低阶的超收敛位移即可。该文按此思路推导了非规则网格下三维六面体单元的EEP超收敛位移公式,给出了一个实施方案,并通过数值算例验证了此方案的有效性。  相似文献   

9.
叶康生  曾强 《工程力学》2017,34(1):45-50,68
该文以杆件轴向自由振动问题为例提出一个结构自由振动问题的新型超收敛计算方法。该法基于有限元解答中频率和振型结点位移的超收敛特性,建立了单元上振型近似满足的线性常微分方程边值问题,对该线性边值问题采用更高次数的多项式进行有限元求解获得各单元上振型的超收敛解,将振型的超收敛解代入Rayleigh商,获得结构频率的超收敛解。该法简单、直接,通过很少量的计算即能显著提高频率和振型的精度和收敛阶。数值算例显示,该法高效、可靠,是一个颇具潜力的新方法。  相似文献   

10.
无穷域问题广泛存在于实际工程中,半解析、半离散的数值计算方法—有限元线法(Finite ElementMethod of Lines,简称FEMOL)对其具有较好的适应性。在已有的映射型FEMOL无穷单元理论的基础上,基于单元能量投影(Element Energy Projection,简称EEP)法的自适应FEMOL被应用于二维无穷域问题的求解。用户只需输入稀疏的初始网格和误差限,算法即自动生成优化的FEMOL网格,该网格上常规单元和无穷单元的FEMOL解均按最大模度量满足给定误差限。文中首先介绍二维FEMOL的原理策略、无穷单元的构建,然后概述基于EEP法的自适应FEMOL算法,并讨论其对无穷域问题的适用性,之后对圆柱绕流的Poisson方程问题、带孔无穷大板单向拉伸的弹性力学平面问题、受圆形均布荷载半空间体的三维轴对称问题进行了自适应分析,最终不仅给出了满足误差限的函数(位移)解,也给出了具有优良性态的导数(应力)解,从而为无穷域问题的求解提供了一种高效可靠的新途径。  相似文献   

11.
从Hellinger-Reissner变分原理出发,将位移、应变、应力场分离为零阶场与频率相关的高阶场,对位移场和应力场独立插值,导出了薄板弯曲振动的杂交动态有限元列式。数值算例表明,本文方法简单、有效。  相似文献   

12.
In order to assess the discretization error of a finite element solution, asymptotic solutions for predicted natural frequencies of two-dimensional elastic solid vibration problems in the finite element analysis are presented in this paper. Since the asymptotic solution is more accurate than the original finite element solution, it can be viewed as an alternative solution against which the original finite element solution can be compared. Consequently, the discretization error of the finite element solution can be evaluated. Due to the existence of two kinds of two-dimensional problems in engineering practice, both the plane stress problem and the plane strain problem have been considered and the corresponding asymptotic formulae for predicted natural frequencies of two-dimensional solids by the finite element method have been derived from the fact that a discretized finite element system approaches a continuous one if the finite element size approaches zero. It has been demonstrated, from the related numerical results of three examples, that the present asymptotic solution, which can be obtained by simply using the corresponding formula without any further finite element calculation, is indeed more accurate than the original finite element solution so that it can be considered as a kind of corrected solution for the discretization error estimation of a finite element solution.  相似文献   

13.
安装防振锤的分裂导线自由振动的有限元计算   总被引:6,自引:0,他引:6  
何锃  赵高煜 《工程力学》2003,20(1):101-105
提出了大跨越分裂导线的一种新型三维有限元模型,它可以直接处理安装防振锤的子导线.针对导线运动的小应变和小转角特点,结合间隔棒对导线的约束关系,推导建立了单元质量和刚度矩阵.应用获得的公式体系对实际大跨越分裂导线进行了自由振动计算,与实测结果比较,表明本文的方法和结果可靠、有效.  相似文献   

14.
吴庆雄  王文平  陈宝春 《工程力学》2013,30(3):347-354, 382
为了更全面、精确地进行包括斜拉索参数振动在内的索梁结构非线性振动分析,该文采用索单元和去除自重的非线性动力计算方法,实现了能考虑参数振动的拉索非线性振动有限元方法;采用扩大Rayleigh阻尼矩阵,可以同时考虑主梁的阻尼和相对较小的拉索阻尼;将这些计算方法植入自编程序NL_Beam3D中以考虑斜拉索与主梁之间的相互作用。以1993年Fujino进行的索梁结构试验为算例,分析表明该方法能较正确地模拟索梁结构中副不稳定区域和主不稳定区域的拉索参数振动。  相似文献   

15.
本文是有限元线法(FEMOL)求解非线性模型问题的系列工作之三,对薄膜的固有振动这一特征值模型问题作了分析求解。文中,首先用FEMOL对特征值问题的泛函进行半离散,得到相应的常微分方程(ODE)特性值问题;然后,利用若干ODE变换技巧将问题转换成标准的非线性ODE问题;最后,采用一个新近研究出的有效算法,对各阶特征对进行了方便有效、精确可靠的求解。文中出示的算例展示了该法的功效。  相似文献   

16.
桩板基础减振的有限元计算   总被引:1,自引:0,他引:1  
利用有限元方法求解了建筑-桩板基础-地基的相互作用问题,通过计算得出了采用桩板基础能很好的达到减振的目的以及桩板基础对不同频率激励的减振效果。说明了用直接积分法解动力学问题时阻尼的简化处理方法以及微振问题有限元计算中地基的处理方法和模型中单元从密到疏过渡方案的选取。  相似文献   

17.
为了判断网格结构有限元模型中梁单元的长度和插值函数是否合理并对此进行调整,首先推导了梁在受拉、受压、纯弯3种情况下的挠曲微分方程,以有限元试算得到的梁单元两端节点力为边界条件,求出了梁单元广义力分布场的解析解;然后,根据Zienkiewicz-Zhu后验误差估计理论,以该解析解为广义力相对精确解,推导了广义力有限元解和广义力相对精确解的能量范数以确定梁单元的相对误差。在试算过程中,如果网格结构中每个梁单元的相对误差都满足精度要求,则终止试算过程,否则调整梁单元的插值函数或长度后再进行试算。以单层球面网壳的自适应有限元静力分析为例验证了该方法的正确性和可行性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号