首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Magnesium powders were mechanically alloyed with SiO2 powder particles having different particle sizes using high-energy ball milling techniques under Ar atmosphere for 1 h. The powders were consolidated with cold pressing under 560 Mpa. They were then sintered at 550℃ for 45 min under Ar atmosphere. The composites obtained on the Mg-SiO2 system were investigated using the Archimedes principle, a differential scanning calorimeter, X-ray diffraction, optic microscopy, and scanning electron microscopy. For the mechanically alloyed powders, the solid-state reaction of the synthesis of Mg2Si and MgO progressed further during sintering of the materials. The results showed that the strengthening mechanisms were dependent on dispersion hardening of fine Mg2Si and MgO particulates dispersed homogeneously in the matrix.  相似文献   

2.
It has recently been shown that the hydriding properties of the nanocrystalline metal hydrides are far superior to those of the polycrystalline ones. Especially in the case of the Mg-based hydrogen storage alloys, nanostructural modifications have been studied for the purpose of improving their hydrogenation kinetics. In previous studies, I reported on the successful fabrication of Mg2NiHx from Mg and Ni chips with hydrogen induced mechanical alloying (HIMA). Observation of the microstructure showed that the synthesized particles (processed with a 66:1 ball to chips mass ratio and 96 hr HIMA) are composed of amorphous and nanocrystalline composite phases with a grain size of less than 10 nm. The aim of the present work was to examine the hydriding/dehydriding behavior of nanocrystalline metal hydrides using a Sieverts type automatic pressure-composition-isotherm (PCI) apparatus at 393, 423, 453, 483, 513 and 543 K. The specimen was characterized by X-ray diffraction after PCI measurement. The influence of hydrogenation behavior on the phase transition of nano-/amorphous Mg2Ni is a key factor in commercial application. The particles synthesized at 66:1 BCR and 96 hr HIMA revealed a good hydrogen capacity of 2.25 mass% at 483 K.  相似文献   

3.
Al2O3/ZrO2/Al2O3 gate stacks were prepared on ultrathin SOI (Silicon on insulator) substrates by ultrahigh vacuum electron beam evaporation and post-annealed in N2 at 450°C for 30 min. Three clear nanolaminate layered structure of Al2O3(2.1 nm)/ZrO2(3.5 nm)/Al2O3(2.3 nm) was observed with a high-resolution cross-sectional transmission electron microscope (HR-XTEM). High frequency capacitance voltage (C-V) characteristics of a fully depleted (FD) SOI MOS capacitor at 1 and 5 MHz were studied. The minority carriers determine the high frequency C-V properties, which is opposite to the case of bulk MOS capacitors. The series resistance of the SOI substrate is found to be the determinant factor of the high frequency characteristics of FD SOI MOS capacitors. This article is based on a presentation in “The 7th Korea-China Workshop on Advanced Materials” organized by the Korea-China Advanced Materials Cooperation Center and the China-Korea Advanced Materials Cooperation Center, held at Ramada Plaza Jeju Hotel, Jeju Island, Korea on August 24≈27, 2003.  相似文献   

4.
Metal-insulator-semiconductor (MIS) structures containing Ge nanocrystals embedded in both Al2O3 and ZrO2/Al2O3 are fabricated by an ultra-high vacuum electron-beam evaporation method. Secondary ion mass spectroscopy (SIMS) results indicate that Ge embedded in Al2O3 diffuses towards the surface of the Al2O3 layer after annealing at 800°C in N2 ambient for 30 min. Ge embedded in ZrO2/Al2O3 is stable, thus inducing less leakage current. Capacitance voltage studies indicate that annealing can effectively passivate the negatively charged trapping centers. Memory effect of the Ge nanoclusters is verified by hysteresis in the C-V curves in the Al2O3/Ge+Al2O3/Al2O3 and ZrO2/Ge+Al2O3/Al2O3 samples. This article is based on a presentation in “The 7th Korea-China Workshop On Advanced Materials” organized by the Korea-China Advanced Materials Cooperation Center and the China-Korea Advanced Materials Cooperation Center, held at Ramada Plaza Jeju Hotel, Jeju Island, Korea on August 24–27, 2003.  相似文献   

5.
Aluminum (Al) alloy 7075 reinforced with Al2O3 particles was prepared using the stir casting method. The microstructure of the cast composites showed some degree of porosity and sites of Al2O3 particle clustering, especially at high-volume fractions of Al2O3 particles. Different squeeze pressures (25 and 50 MPa) were applied to the cast composite during solidification to reduce porosity and particle clusters. Microstructure examinations of the squeeze cast composites showed remarkable grain refining compared with that of the matrix alloy. As the volume fraction of particles and applied squeeze pressure increased, the hardness linearly increased. This increase was related to the modified structure and the decrease in the porosity. The effect of particle volume fraction and squeeze pressure on the dry-sliding wear of the composites was studied. Experiments were performed at 10, 30, and 50 N with a sliding speed of 1 m/s using a pin-on-ring apparatus. Increasing the particle volume fraction and squeeze pressure improved the wear resistance of the composite compared with that of the monolithic alloy, because the Al2O3 particles acted as load-bearing constituents. Also, these results can be attributed to the fact that the application of squeeze pressure during solidification led to a reduction in the porosity, and an increase in the solidification rate, leading to a finer structure. Moreover, the application of squeeze pressure improved the interface strength between the matrix and Al2O3 particles by elimination of the porosity at the interface, thereby providing better mechanical locking.  相似文献   

6.
This paper focused on the effects of Mn addition from 0 to 10wt% on the mechanical properties and microstructure of V added Mo2NiB2 based model cermets. Transverse rupture strength of the cermets increased with increasing Mn content and showed a maximum value of 3.5 GPa at 2.5 wt.%Mn, and then decreased with further increasing Mn content. Hardness increased monotonically from 86.4RA up to 10wt%Mn. The high TRS at 2.5 wt.%Mn was attributed to size refinement and homogeneous distribution of Mo2NiB2 complex boride resulting from Mn addition. This article is based on a presentation made in the symposium “The 3rd KIM-JIM Joint Symposium on Advanced Powder Materials”, held at Korea University, Seoul, Korea, October 26–27, 2001 under auspices of The Korean Institute of Metals and Materials and The Japan Institute of Metals.  相似文献   

7.
Nanostructured Bi2Se3 and Sn0.5-Bi2Se3 were successfully synthesized by hydrothermal coreduction from SnCl2·H2O and the oxides of Bi and Se. The products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and field emission scanning electron microscope (FESEM). Bi2Se3 powders obtained at 180°C and 150°C consist of hexagonal flakes of 50–150 nm in side length and nanorods of 30–100 nm in diameter and more than 1 μm in length. The product obtained at 120°C is composed of thin irregular nanosheets with a size of 100–200 nm and several nanometers in thickness. The major phase of Sn0.5-Bi2Se3 synthesized at 180°C is similar to that of Bi2Se3. Sn0.5-Bi2Se3 powders are primarily nanorod structures, but small amount of powders demonstrate irregular morphologies.  相似文献   

8.
The C15 Laves phase with composition Tb0.2Pr0.8(Fe0.4Co0.6)1.93 was synthesized by mechanical alloying (MA) and subsequent annealing process. The structure and magnetic properties of Tb0.2Pr0.8(Fe0.4Co0.6)1.93 were investigated by means of X-ray diffraction (XRD), a vibrating sample magnetometer, and a standard strain technique. The effect of annealing on the structure and magnetic properties was studied. The analysis of XRD shows that the high Pr-content Tb0.2Pr0.8(Fe0.4Co0.6)1.93 alloy with the single phase of MgCu2-type structure can be successfully synthesized by MA method. The sample annealed at 450°C is found to have a coercivity of 196 kA/m at room temperature. An epoxy/Tb0.2Pr0.8(Fe0.4Co0.6)1.93 composite was produced by a cold isostatic pressing technique. A large magnetostriction of 400 ppm, at an applied magnetic field of 800 kA/m, was found for the composite. The epoxy-bonded Tb0.2Pr0.8(Fe0.4Co0.6)1.93 composite combines a high magnetostriction with a significant coercivity, which is a promising magnetostrictive material.  相似文献   

9.
Al5Mg alloy matrix composites reinforced with different percentages of Al2O3 (60 μm) or C (90 μm) particulates were prepared by the vortex method. The composites were then subjected to hot or cold rolling with different reduction ratios. The microstructures of the rolled composites revealed that the matrix grains moved around the particulate causing deformation. By continuing deformation, the particulates rearranged themselves in the matrix, leading to lensoid distortion. It was found that the addition of Al2O3 or C particulates increased the 0.2% proof stress and reduced both the tensile strength and ductility, compared with the monolithic alloy. Scanning electron microscopy (SEM) fractographic examinations showed that the composites reinforced with Al2O3 particulates failed through particulate fracture and matrix ligament rupture. However, the failure of the composites reinforced with C particulates was through particulate decohesion, followed by ductile failure of the matrix. Abrasive wear results showed that the wear rate of the Al5Mg alloy decreased with the addition of C particulates. However, increasing the volume fraction of C particulates did not have a prominent effect on the wear rate. The composites reinforced with Al2O3 particulates exhibited a higher wear rate than that of the unreinforced alloy. Furthermore, addition of both C and Al2O3 particulates into the Al5Mg matrix alloy did not significantly improve the wear resistance. For all composites studied in this work, hot or cold rolling had a marginal effect on the wear results.  相似文献   

10.
Al + SiC, Al + Al2O3 composites as well as pure Al, SiC, and Al2O3 coatings were prepared on Si substrates by the cold gas dynamic spray process (CGDS or cold spray). The powder composition of metal (Al) and ceramic (SiC, Al2O3) was varied into 1:1 and 10:1 wt.%, respectively. The propellant gas was air heated up to 330 °C and the gas pressure was fixed at 0.7 MPa. SiC and Al2O3 have been successfully sprayed producing coatings with more than 50 μm in thickness with the incorporation of Al as a binder. Also, hard ceramic particles showed peening effects on the coating surfaces. In the case of pure Al metal coating, there was no crater formation on hard Si substrates. However, when Al mixed with SiC and Al2O3, craters were observed and their quantities and sizes depended on the composition, aggregation and size of raw materials.  相似文献   

11.
The target of this work was to investigate the phase development in the catalyst system consisting of TiO2 (Anatase) and V2O5 (Shcherbinaite) under several gas atmospheres. Thus a set of V2O5/TiO2 specimens was prepared by ball milling and exposed to subsequent annealing in air and feed gas in the temperature range from 400 to 700 °C. The XRD-results showed that the initial phases Anatase and Shcherbinaite remain stable for all atmospheres containing oxygen. In the temperature range above 525 °C the formation of a Rutile solid solution (Rutile-ss) containing VO x species takes place. However, under reducing conditions (lower oxygen partial pressure) the reduction of V2O5 to V2O3 was found by X-ray diffraction measurements. There is no miscibility up to 1300 °C followed by the formation of V2TiO5 (Berdesinskiite). SEM images underline the reduction by monitoring the change in morphology with respect to the V-containing phases. TiO2 remains without much alteration. The two phases V2Ti7O17 and V2Ti3O9 (Schreyerite) as described in mineralogy have not been observed in these experiments. The knowledge of phase relations helps to find the appropriate processing conditions and to understand the aging phenomena of catalysts.  相似文献   

12.
Corrosive wear behavior of 7075 aluminum alloy and a composite containing 0.10 volume fraction of alumina particles (VFAP) has been evaluated. Transient current (TC) generated as a result of impacting a rotating cylindrical electrode immersed in a 0.1M NaCl solution with a Vickers diamond hardness indenter has been used to measure the corrosive wear response. Age hardenable 7075 alloy shows TC values that are sensitive to prior solutionizing time. The effect of alumina particles in a 7075 aluminum alloy matrix has been studied by comparing the TC values of a monolith along with composites under almost identical experimental conditions. The role of microstructural features associated with composites, such as dislocations generated after solutionizing treatment and during the corrosive wear process, has been observed with the help of near surface microstructures through transmission electron microscopy (TEM). Deformation induced dislocations, as well as those that are due to differences in the coefficient of thermal expansion (CTE) values between the particles and the matrix during solutionizing, have been attributed to the experimentally observed TC values. They may also be affected by the aging response of the monolith and composites, depending on solutionizing time.  相似文献   

13.
Dense nanophase Ce0.8Gd0.2O1.9 was sintered by a pulsed-current-activated sintering method within 10 min from Ce0.8Gd0.2O1.9 nanopowder made using the co-precipitation method. Sintering was accomplished under the combined effects of a pulsed current and mechanical pressure. Highly dense Ce0.8Gd0.2O1.9 with a relative density of up to 96.5% was produced under the simultaneous application of 80 MPa of pressure and a pulsed current. The ionic conductivities and mechanical properties of the Ce0.8Gd0.2O1.9 were investigated.  相似文献   

14.
Ti3AlC2 has the properties of ceramics and metals. These excellent properties indicate that Ti3AlC2 is a very promising material to extensive applications. Ti3AlC2 ceramic material was prepared by mechanical alloying. The effects of milling time and sintering temperature on the fracture, microstructure and mechanical properties of Ti3AlC2 ceramic material were analyzed by laser particle analyzer, X-ray diffraction, and scanning electron microscopy. The experimental results showed that Ti3AlC2 had the best comprehensive properties after the composite powder was milled for 3 h and sintered at 1630°C for 2 h. The relative density, bending strength, and hardness of the sample reached 92.23%, 345.2 MPa, and HRA 34.1, respectively. The fracture surface indicated that the fracture of the material belonged to ductile rapture.  相似文献   

15.
In previous studies, it has been demonstrated that nanostructured Al2O3-13 wt.%TiO2 coatings deposited via air plasma spray (APS) exhibit higher wear resistance when compared to that of conventional coatings. This study aimed to verify if high-velocity oxy-fuel (HVOF)-sprayed Al2O3-13 wt.%TiO2 coatings produced using hybrid (nano + submicron) powders could improve even further the already recognized good wear properties of the APS nanostructured coatings. According to the abrasion test results (ASTM G 64), there was an improvement in wear performance by a factor of 8 for the HVOF-sprayed hybrid coating as compared to the best performing APS conventional coating. When comparing both hybrid and conventional HVOF-sprayed coatings, there was an improvement in wear performance by a factor of 4 when using the hybrid material. The results show a significant antiwear improvement provided by the hybrid material. Scanning electron microscopy (SEM) at low/high magnifications showed the distinctive microstructure of the HVOF-sprayed hybrid coating, which helps to explain its excellent wear performance. This article is an invited paper selected from presentations at the 2007 International Thermal Spray Conference and has been expanded from the original presentation. It is simultaneously published in Global Coating Solutions, Proceedings of the 2007 International Thermal Spray Conference, Beijing, China, May 14-16, 2007, Basil R. Marple, Margaret M. Hyland, Yuk-Chiu Lau, Chang-Jiu Li, Rogerio S. Lima, and Ghislain Montavon, Ed., ASM International, Materials Park, OH, 2007.  相似文献   

16.
LiNi1/3Co1/3Mn1/3O2 cathode material was surface-treated to improve its electrochemical performance. Al2O3 nanoparticles were coated onto the surface of LiNi1/3Co1/3Mn1/3O2 powder using a sol-gel method. The as-prepared Al2O3 nano-particle was identified as the cubic structure of Al2O3. XRD showed that the LiNi1/3Co1/3Mn1/3O2 structure was not affected by the Al2O3 coating. With a coating of 3 wt.% Al2O3 on LiNi1/3Co1/3Mn1/3O2, the cyclic-life performance and rate capability were improved. However, heavier coatings (5 wt.%) on LiNi1/3Co1/3Mn1/3O2 resulted in a considerable decrease of the discharge capacity and rate capability. The thermal stability of LiNi1/3Co1/3Mn1/3O2 materials was greatly improved by the 3 wt.% Al2O3 coating.  相似文献   

17.
Fe-based nanocrystalline powder sheets with dielectric TiO2 powder additives were investigated to improve the characteristics of electromagnetic (EM) wave absorption. The amorphous ribbons of Fe73Si16B7Nb3Cu1 (at.%) alloys were prepared by a planar flow casting (PFC) process, and the ribbons were pulverized using an attrition mill. Fe-based flake powder crystallized at 550°C for 1h was mixed with a nano-sized and a micro-sized TiO2 powder. The powder mixtures were then tape-cast with binders to become EM wave-absorbing sheets. The absorbing properties of the fabricated sheet sample, such as complex permittivity and permeability, were measured by a network analyzer. The properties of EM wave absorption improved with the increase of TiO2 powder in the mixture. The mixture with micro-sized TiO2 powder was a little more effective in causing power loss of EM waves than the mixture with nano-sized TiO2 powder.  相似文献   

18.
19.
Thin TiO2 layers grown at 130°C on SiO2-coated Si substrates by atomic layer deposition (ALD) using TTIP and H2O as precursors were annealed, and the effects of the annealing temperature on the resulting electrical properties of TiO2 and the interface properties between a Pt electrode and TiO2 were examined using transmission line model (TLM) structures. The as-deposited TiO2 thin film had an amorphous structure with OH groups and a high resistivity of 6×103Ω-cm. Vacuum annealing at 700 °C transformed the amorphous film into an anatase structure and reduced its resistivity to 0.04Ω-cm. In addition, the vacuum-annealing of the TiO2/SiO2 structure at 700°C produced free silicon at the TiO2-SiO2 interface as a result of the reaction between the Ti interstitials and SiO2. The SiO2 formed on the TiO2 surface caused a Schottky contact, which was characterized by the TLM method. The use of the TLM method enabled the accurate measurement of the resistivity of the vacuum-annealed TiO2 films and the characterization of the Schottky contacts of the metal electrode to the TiO2.  相似文献   

20.
Ternary interdiffusion in L12-Ni3Al with ternary alloying addition of Re was investigated at 1473 K using solid-to-solid diffusion couples. Interdiffusion flux of Ni, Al, and Re were directly calculated from experimental concentration profiles and integrated for the determination of average ternary interdiffusion coefficients. The magnitude of main interdiffusion coefficients and was determined to be much larger than that of the main interdiffusion coefficient A moderate tendency for Re to substitute for Al sites was reflected by its influence on interdiffusion of Al, quantified by large and positive coefficients. Similar trends were observed from ternary interdiffusion coefficients determined by Boltzmann-Matano analysis. Profiles of concentrations and interdiffusion fluxes were also examined to estimate binary interdiffusion coefficients in Ni3Al, and tracer diffusion coefficients of Re (5.4 × 10−16 ± 2.3 × 10−16 m2/s) in Ni3Al.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号