首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Einstein–Podolski–Rosen (EPR) entanglement states are achievable by combining two single-mode position and momentum squeezed states at a 50:50 beam splitter (BS). To generate the EPR mechanical entanglement, we consider the system consisted of two parametric optomechanical resonators, where two mechanical oscillators are linearly coupled. The linear coupling forms the symmetric and antisymmetric combinations of two mechanical modes, parallel to a 50:50 BS mixing. In the weak optomechanical coupling regime and via applying the opposite phases of parametric interactions, the symmetric and antisymmetric mechanical modes can be position and momentum squeezed, respectively. Therefore, two original mechanical modes are EPR entangled. Moreover, the mechanical thermal noise can decrease the entanglement. But with the parametric interaction enhanced optomechanical cooling, the influence of thermal noise on entanglement can be significantly suppressed, and the mechanical entanglement can be generated under a relatively high temperature. We also discuss the critical thermal occupation where the entanglement disappears, which is proportional to the optomechanical cooperativity parameter.  相似文献   

2.
In this paper, we consider the situation that four identical two-level atoms are separately trapped in separated tetrahedral structure single-mode optical cavities, which are placed at the vertices of a tetrahedron and are coupled by four fibres. Each atom resonantly interacts with cavity via a one-photon hopping. The evolution of the state vector of the system is given by solving the Schrödinger equation when the total excitation number of the system equals one. Negativity is adopted to quantify the degree of entanglement between two subsystems. The entanglement dynamics between atoms and between cavities is studied. The influences of atom-cavity coupling coefficient on the entanglement between atoms and that between cavities are discussed. The results obtained using the numerical method show that the atom–atom entanglement and the cavity–cavity entanglement are all strengthened with increase of atom-cavity coupling coefficient.  相似文献   

3.
Using the Gaussian Rényi-2 entropy, we analyse the behaviour of two different aspects of quantum correlations (entanglement and quantum discord) in two optomechanical subsystems (optical and mechanical). We work in the resolved sideband and weak coupling regimes. In experimentally accessible parameters, we show that it is possible to create entanglement and quantum discord in the considered subsystems by quantum fluctuations transfer from either light to light or light to matter. We find that both mechanical and optical entanglement are strongly sensitive to thermal noises. In particular, we find that the mechanical one is more affected by thermal effects than that optical. Finally, we reveal that under thermal noises, the discord associated with the entangled state decays aggressively, whereas the discord of the separable state (quantumness of correlations) exhibits a freezing behaviour, seeming to be captured over a wide range of temperature.  相似文献   

4.
We study how to control the dynamics of tripartite entanglement among optical cavities using non-Markovian baths. In particular, we demonstrate how the reservoir engineering through the utilization of non-Markovian baths with different types of Lorentzian and ohmic spectral densities can lead to an entanglement survival for longer times and in some cases considerable regain of seemingly lost entanglement. Both of these behaviours indicate a better sustainability of entanglement (in time) compared to the usual Markovian bath situations which assumes a flat spectrum of the bath around the system resonant frequency. Our scheme shows these effects in the context of optical cavities starting off in a maximally entangled W and Greenberger–Horne–Zeilinger tripartite states. In Lorentzian cases, we find that the far detuned double Lorentzian baths with small coupling strengths and for ohmic-type baths super-ohmic environments with smaller cutoff frequencies are the best candidates for preserving entanglement among cavities for significant amount of time. A non-Markovian quantum jump approach is employed to understand the entanglement dynamics in these cases, especially to recognize the collapse and revival of the entanglement in both W and GHZ states.  相似文献   

5.
In this paper, we study theoretically the optomechanical interaction of an interacting condensate of photons with an oscillating mechanical membrane in a microcavity. We show that in the Bogoliubov approximation, due to the large number of photons in the condensate, there is a linear strong effective coupling between the Bogoliubov mode of the photonic Bose–Einstein condensate (BEC) and the mechanical motion of the membrane which depends on the photon–photon scattering potential. This coupling leads to the cooling of the mechanical motion, the normal mode splitting (NMS), the squeezing of the output field and the entanglement between the excited mode of the cavity and the mechanical mode. Since the photon condensation occurs at room temperature, this hybrid system can be potentially considered as a room temperature source of squeezed light as well as a suited candidate for exploring the quantum effects. We show that, on one hand, the non-linearity of the photon gas increases the degree of the squeezing of the output field of the microcavity and the efficiency of the cooling process at high temperatures. On the other hand, it reduces the NMS in the displacement spectrum of the oscillating membrane and the degree of the optomechanical entanglement. In addition, the temperature of the photonic BEC can be used to control the above-mentioned phenomena.  相似文献   

6.
The control of modes coupling in photonic crystal waveguides (PCWGs) is quite important because it's the basic working mechanism of many devices in optical integrative circuits, such as filters, switches, optical add drop multiplexers (OADMs), etc. Up to now, the researches of this area mostly focus on the modes coupling between two parallel PCWGs or between PCWGs and resonance cavities. In this paper, we proposed a new way of controlling modes coupling in PCWGs by introducing asymmetry and long periodicity. Because of the presence of asymmetry and long periodicity in PCWGs, some interesting modes coupling phenomena, which used to be forbidden in normal PCWGs, happen. Then a filter with a 1.42 nm full-width at the half value (FWHM) and an OADM with a 1.31 nm FWHM and a 0.34 dB insertion loss have been designed by utilizing the new modes coupling phenomena. Our researches not only provide a new way of controlling modes coupling in PCWGs but also benefit the design of many devices in optical integrative circuits greatly.  相似文献   

7.
We consider an optical and mechanical mode interacting through both linear and quadratic dispersive couplings in a general cavity-optomechanical set-up. The parity and strength of an intrinsic quadratic optomechanical coupling (QOC) provides an opportunity to control the optomechanical (OM) interaction. We quantify this interaction by studying normal-mode splitting (NMS) as a function of the QOC's strength. The proposed scheme exhibits NMS features equivalent to a hybrid-OM system containing either an optical parametric amplifier or a Kerr medium. Such a system in reality could offer an alternative platform for devising state-of-art quantum devices with requiring no extra degrees-of-freedom as in hybrid-OM systems.  相似文献   

8.
We investigate coupled two-cavity optomechanical systems to show their potential usages by revealing the physical processes. Under two conditions, we deduce the correspondingly effective Hamiltonian with beam splitter type and nondegenerate parametric-down conversion type, respectively. Including the whole interactions, we show that the state transfer and the stationary entanglement between the two mechanical resonators can be achieved.  相似文献   

9.
Gratings enable light coupling into an optical cavity without transmission through any substrate. This concept reduces light absorption and substrate heating and was suggested for light coupling into the arm cavities of future gravitational wave detectors. One particularly interesting approach is based on all-reflective gratings with low diffraction efficiencies and three diffraction orders (three ports). However, it was discovered that, generally, three-port grating coupled cavities show an asymmetric resonance profile that results in asymmetric and low quality Pound-Drever-Hall error signals for cavity length control. We experimentally demonstrate that this problem is solved by the detection of light at both reflection ports of the cavity and the postprocessing of the two demodulated electronic signals.  相似文献   

10.
A planar metamaterial, consisting of double-slot cavities in a unit cell, has been investigated in detail. The results indicate that the interaction between two bright modes also leads to the transparency effect. Meanwhile, the transparency window can be adjusted by changing the length of slot cavity and the distance between two slot cavities. Finally, it is demonstrated that the planar metamaterial design may serve as a highly efficient sensor in near-infrared. The sensitivity is as high as 520 nm/RIU, and the FOM is up to 24.83. The planar metamaterial has the advantages of simple and compact structure, easy fabrication, which will greatly benefit the optical switch, nano plasmonic sensor in highly integrated optical circuits.  相似文献   

11.
We investigate synchronization and entanglement in two coupled cavity optomechanical systems. The classical synchronization, quantum synchronization and entanglement of the two cavity fields and the two mechanical oscillators are analysed, respectively. Our results show that the two cavity resonators are synchronization without entanglement, while the two mechanical oscillators are entangled with quantum-phase synchronization. We conclude that the quantum synchronization and entanglement have no affirmatory relationship although they are both signature of correlation.  相似文献   

12.
We theoretically analyse the optical and optomechanical nonlinearity present in a hybrid system consisting of a quantum dot(QD) coupled to an optomechanical cavity in the presence of a nonlinear Kerr medium, and show that this hybrid system can be used as an all optical switch. A high degree of control and tunability via the QD-cavity coupling strength, the Kerr and the optomechanical nonlinearity over the bistable behaviour shown by the mean intracavity optical field and the power transmission of the weak probe field can be achieved.The results obtained in this investigation has the potential to be used for designing efficient all-optical switch and high sensitive sensors for use in Telecom systems.  相似文献   

13.
We theoretically investigate the nonlinear effects in a hybrid quantum optomechanical system consisting of two optically coupled semiconductor microcavities containing a quantum dot and a Kerr nonlinear substrate.The steady-state behaviour of the mean intracavity optical field demonstrates that the system can be used as an all optical switch. We further investigate the spectrum of small fluctuations in the mechanical displacement of the movable distributed Bragg reflectors and observe that normal mode splitting takes place for high Kerr nonlinearity and pump power. In addition, we have shown that steady state of the system exhibits two possible bipartite entanglements by proper tuning of the system parameters. The entanglement results suggest that the proposed system has the potential to be used in quantum communication platform. Our work demonstrates that the Kerr-nonlinearity can effectively control the optical properties of the hybrid system, which can be used to design efficient optical devices.  相似文献   

14.
We study an optomechanical system consisting of an optical cavity and movable mirror coupled through dispersive linear optomechanical coupling (LOC) and quadratic optomechanical coupling (QOC). We work in the resolved side band limit with a high quality factor mechanical oscillator in a strong coupling regime. We show that the presence of QOC in the conventional optomechanical system (with LOC alone) modifies the mechanical oscillator’s frequency and reduces the back-action effects on mechanical oscillator. As a result of this the fluctuations in mechanical oscillator can be suppressed below standard quantum limit thereby squeeze the mechanical motion of resonator. We also show that either of the quadratures can be squeezed depending on the sign of the QOC. With detailed numerical calculations and analytical approximation we show that in such systems, the 3 dB limit can be beaten.  相似文献   

15.
We investigate the double optomechanically induced transparency (OMIT) of a weak problem field in a hybrid optomechanical system, composed of a Bose–Einstein condensate (BEC), a movable mirror and an optical cavity. Contrast to the single OMIT window in a traditional optomechanical system, the frequency difference between the BEC and the moving mirror in our system can lead to the splitting of the single OMIT window into two transparency windows. Interestingly, the splitting of the two windows varies near linearly with the frequency difference and is robust against the cavity decay. This property can be applied to detect the frequency of the movable mirror. Besides, the driving power and the BEC-cavity coupling strength play a key role in controlling the width of the two transparency windows.  相似文献   

16.
The optomechanical coupling that emerges in an optical cavity in which one of the mirrors is a mechanical resonator has allowed sub-Kelvin cooling with the prospect of observing quantum phenomena and self-sustained oscillators with very high spectral purity. Both applications clearly benefit from the use of the smallest possible mechanical resonator. Unfortunately, the optomechanical coupling largely decays when the size of the mechanical system is below the light wavelength. Here, we propose to exploit the optical resonances associated to the light confinement in subwavelength structures to circumvent this limitation, efficiently extending optomechanics to nanoscale objects. We demonstrate this mechanism with suspended silicon nanowires. We are able to optically cool the mechanical vibration of the nanowires from room temperature to 30-40 K or to obtain regenerative mechanical oscillation with a frequency stability of about one part per million. The reported optomechanical phenomena can be exploited for developing cost-optimized mass sensors with sensitivities in the zeptogram range.  相似文献   

17.
Nonclassical properties exhibited by a chain of cavity modes second harmonic generation in coupled oscillators system, designed by using multichannel optical waveguides, is explored. The solution for the Hamiltonian of the coupled-modes driven by coherent excitation is obtained via an exact formulation of the normal-ordered Fokker-Planck equation. Nonclassical effects, namely the sub-Poissonian photons, squeezing and entanglement are noticed. Multichannel coupling of the coupled oscillators induces new possibilities for correlation between the modes in different channels, henceforth, provides an effective way towards manipulation of quantum light.  相似文献   

18.
Optical forces in hybrid plasmonic waveguides   总被引:2,自引:0,他引:2  
Yang X  Liu Y  Oulton RF  Yin X  Zhang X 《Nano letters》2011,11(2):321-328
We demonstrate that in a hybrid plasmonic system the optical force exerted on a dielectric waveguide by a metallic substrate is enhanced by more than 1 order of magnitude compared to the force between a photonic waveguide and a dielectric substrate. A nanoscale gap between the dielectric waveguide and the metallic substrate leads to deep subwavelength optical energy confinement with ultralow mode propagation loss and hence results in the enhanced optical forces at low input optical power, as numerically demonstrated by both Maxwell's stress tensor formalism and the coupled mode theory analysis. Moreover, the hybridization between the surface plasmon modes and waveguide modes allows efficient optical trapping of single dielectric nanoparticle with size of only several nanometers in the gap region, manifesting various optomechanical applications such as nanoscale optical tweezers.  相似文献   

19.
ABSTRACT

We theoretically investigate the optical and mechanical properties of a double cavity optomechanical system with one stationary and two harmonically bound mirrors. We show that it is possible for the mechanical mirrors in this system to possess negative effective mass. Working within the strong coupling and the resolved sideband regime, we show that the displacement of the middle resonator is multistable under certain constrains. We also point to the existence of optomechanically induced absorption (OMIA) and Fano resonance. Owing to the negative effective mass, our scheme can be exploited in the study of quantum optomechanical metamaterials.  相似文献   

20.
Meeting Report     
Abstract

The cooperative dynamics of a microlaser consisting of two threelevel atoms interacting with a pump field and two quantized cavity modes forming a radiative cascade are studied. Adiabatic elimination of one mode leads to a strong dynamical entanglement between the internal states of the atoms which allows us to study the effects of a cavity-mediated dipole-dipole interaction. We show that the coherent dynamics of the two-atom system will preferentially couple symmetrical linear combinations of internal states. If this coupling dominates the dynamics, the two-atom system will behave like a single atom with correspondingly larger dipole moment, that is a superradiant two-atom system. Even very small spontaneous decay causes transitions from symmetrical to antisymmetrical states and conversely. The hopping between two subsets of the state space can give rise to intriguing phenomena such as bistability of the laser mode intensity. By a randomization of the two coupling phases we recover the standard independent-atom laser theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号