首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The adenovirus 12S E1A protein can stimulate the activity of the c-jun promoter through a conserved region 1 (CR1)-dependent mechanism. The effect is mediated by two AP-1/ATF-like elements, jun1 and jun2, that preferentially bind c-Jun-ATF-2 heterodimers. In this study, we show that the ATF-2 component of the c-Jun-ATF-2 heterodimer is the primary target for 12S E1A: 12S E1A can enhance the transactivating activity of the N terminus of ATF-2 when fused to a heterologous DNA-binding domain, whereas the transactivating activity of the c-Jun N terminus is not significantly affected. Activation of the ATF-2 N terminus by 12S E1A is dependent on CR1. In the context of the 13S E1A protein, CR1 and CR3 can both contribute to activation of ATF-2, and their relative contributions are dependent on the cell type. In contrast to activation of ATF-2 by stress-inducing agents, CR1-dependent activation of ATF-2 was found not to depend strictly on the presence of threonines 69 and 71 in the N terminus of ATF-2, which are targets for phosphorylation by stress-activated protein kinases (SAPKs). In agreement with this observation, we did not observe phosphorylation of threonines 69 and 71 or constitutively enhanced SAPK activity in E1A- plus E1B-transformed cell lines. These data suggest that CR1-dependent activation of ATF-2 by 12S E1A does not require phosphorylation of threonines 69 and 71 by SAPK.  相似文献   

2.
Cyclin-dependent protein kinases (Cdks) are key regulatory proteins of the eukaryotic cell cycle. Cdc2 is expressed in late G1/S phase and functions in the G2 to M phase transition. Adenovirus E1A proteins are known to induce the expression of p34cdc2 and DNA synthesis in normal quiescent cells. In this study, mutational analysis of the human cdc2 promoter revealed that transactivation of the promoter by the E1A proteins in cycling cells is mediated through the two CCAAT box binding motifs. A 110-kDa protein (CBF/cdc2) was identified in nuclear extracts from monkey kidney (CV-1) cells stably expressing E1A as well as from adenovirus-transformed human 293 cells. Further, we show that this EIA-inducible CBF/cdc2 is related to the CBF which was shown to activate the heat shock protein 70 promoter. Analyses of the functional domain(s) of E1A required for the induction of the CBF and transactivation of the cdc2 promoter in these conditions revealed that E1A mutants which were defective in binding the pRB family of proteins or the cellular p300 protein were still active in assays measuring the induction of the CBF and transactivation of the cdc2 promoter, albeit with reduced efficiencies. But the E1A mutant which lost both functional domains was inactive in these assays. These results suggest that E1A has redundant functional domains for the induction of the 110-kDa CBF and activation of human cdc2 gene expression.  相似文献   

3.
4.
Adenovirus E1A proteins immortalize primary animal cells and cooperate with several other oncogenes in oncogenic transformation. These activities are primarily determined by the N-terminal half (exon 1) of E1A. Although the C-terminal half (exon 2) is also essential for some of these activities, it is dispensable for cooperative transformation with the activated T24 ras oncogene. Exon 2 negatively modulates in vitro cooperative transformation with T24 ras as well as the tumorigenic and metastatic potentials of transformed cells. A short C-terminal sequence of E1A governs the oncogenesis-restraining activity of exon 2. This region of E1A binds with a cellular phosphoprotein, CtBP, through a 5-amino acid motif, PLDLS, conserved among the E1A proteins of human adenoviruses. To understand the mechanism by which interaction between E1A and CtBP results in tumorigenesis-restraining activity, we searched for cellular proteins that complex with CtBP. Here, we report the cloning and characterization of a 125-kDa protein, CtIP, that binds with CtBP through the PLDLS motif. E1A exon 2 peptides that contain the PLDLS motif disrupt the CtBP-CtIP complex. Our results suggest that the tumorigenesis-restraining activity of E1A exon 2 may be related to the disruption of the CtBP-CtIP complex through the PLDLS motif.  相似文献   

5.
The effects of transferring clients from assertive community treatment to a less intensive (step-down) case management program were examined. Service use decreased significantly after transfer to the step-down program, and no negative effects of transfer on hospital use or client functioning were evident. Critical elements for successful step-down are suggested and discussed.  相似文献   

6.
7.
We defined the epitopes recognized by three influenza A virus-specific, H-2Kd-restricted CD8(+) cytotoxic T-lymphocyte (CTL) clones: H1-specific clone A-12, H2-specific clone F-4, and H1- and H2-cross-reactive clone B7-B7. The A-12 and B7-B7 clones recognized the same peptide, which comprises amino acids 533 to 541 (IYSTVASSL) of A/PR/8 hemagglutinin (HA). The F-4 and B7-B7 clones both recognized the peptide which comprise amino acids 529 to 537 (IYATVAGSL) of A/Jap HA. Amino acids 533 to 541 of A/PR/8 HA are compatible with amino acids 529 to 537 of A/Jap HA. Amino acid S at positions 3 and 7 was responsible for recognition by H1-specific clone A-12, while amino acid G at position 7 was responsible for recognition by H2-specific clone F-4. Two conserved amino acids, T at position 4 and A at position 6, were responsible for recognition by H1-, and H2-cross-reactive clone B7-B7. These results indicate that a single nine-amino-acid region is recognized by HA-specific CTL clones of three different subtype specificities and that the amino acids responsible for the recognition by the CTL clones are different.  相似文献   

8.
Isogenic, E3-deleted adenovirus vectors defective in E1, E1 and E2A, or E1 and E4 were generated in complementation cell lines expressing E1, E1 and E2A, or E1 and E4 and characterized in vitro and in vivo. In the absence of complementation, deletion of both E1 and E2A completely abolished expression of early and late viral genes, while deletion of E1 and E4 impaired expression of viral genes, although at a lower level than the E1/E2A deletion. The in vivo persistence of these three types of vectors was monitored in selected strains of mice with viral genomes devoid of transgenes to exclude any interference by immunogenic transgene-encoded products. Our studies showed no significant differences among the vectors in the short-term maintenance and long-term (4-month) persistence of viral DNA in liver and lung cells of immunocompetent and immunodeficient mice. Furthermore, all vectors induced similar antibody responses and comparable levels of adenovirus-specific cytotoxic T lymphocytes. These results suggest that in the absence of transgenes, the progressive deletion of the adenovirus genome does not extend the in vivo persistence of the transduced cells and does not reduce the antivirus immune response. In addition, our data confirm that, in the absence of transgene expression, mouse cellular immunity to viral antigens plays a minor role in the progressive elimination of the virus genome.  相似文献   

9.
The Ad5 E1A database is a listing of mutations affecting the early region 1A (E1A) proteins of human adenovirus type 5. The database contains the name of the mutation, the nucleic acid sequence changes, the resulting alterations in amino acid sequence and reference. Additional notes and references are provided on the effect of each mutation on E1A function. The database is contained within the Adenovirus 5 E1A page on the World Wide Web at: http://www.geocities.com/CapeCanaveral/Hangar /2541/  相似文献   

10.
11.
A highly sensitive new method for identifying the carboxy terminus of a protein was developed. The carboxyl terminal amino acid was racemized by reaction with acetic anhydride. The resulting modified protein was subjected to acid hydrolysis. The hydrolysate was derivatized with (+)-1-(9-fluorenyl)ethyl chloroformate to give fluorescent amino acid diastereomers. The amino acid diastereomers were separated on a reversed-phase column. Only carboxyl terminal amino acids give a D-amino acid. Application of this method was described for the isolation and identification of carboxyl terminal peptides from an enzymatic digest of a protein.  相似文献   

12.
The E1A oncoproteins of adenovirus type 5 are potent inducers of apoptotic cell death. To manifest growth promoting and transforming properties, therefore, E1A requires the co-expression of a suppressor of apoptosis. During normal viral infection, this function is provided by the E1B 19 kDa protein. However, the cellular suppressor Bcl-2 can substitute for 19K during infection, and both proteins can effectively cooperate with E1A to facilitate transformation of primary cells in culture. How E1A induces apoptosis and at what point(s) on this pathway Bcl-2 and E1B 19K act are not presently known. Here, we demonstrate that E1A-induced apoptosis is accompanied by specific endo-proteolytic cleavage of poly(ADP-ribose) polymerase (PARP), an event that is linked to the Ced-3/ICE apoptotic pathway in other systems. PARP cleavage was also observed in p53-null cells infected with 19K- virus expressing 13S E1A. In addition to PARP cleavage, expression of E1A caused processing of the zymogen form of CPP32, a Ced-3/ICE protease that cleaves PARP and is required for apoptosis in mammalian cells. These events were prevented when E1A was co-expressed with E1B 19K or BCL-2, which places these suppressors of apoptosis either at or upstream of processing of pro-CPP32.  相似文献   

13.
The NH2- and COOH-terminal sequence of nuclear portein A24 has been determined by automatic Edman degradation and carboxypeptidase A and B digestion. Protein A24 is of interest because it is composed in part of histone 2A (Goldknofp, I.L., and Busch, H., (1975) Biochem, Biophys. Res. Commun. 65, 951-960). The sequence of the first 37 NH2-terminal residues is: Met-Gln-Ile-Phe-Val-Lys-Thr-Leu-Thr-Gly-Lys-Thr-Ile-Thr-Leu-Glu-Val-Glu-Pro-Ser-Asp-Thr-Ile-Glu-Asn-Val-Lys-Ala-Lys-Ile-Gln-Asp-Lys-Glu-Gly-Ile-Pro- This sequence is not homologous to any known histone sequence. It contains regions of internal homology (italics). The COOH-terminal amino acid sequence is the same as that of histone 2A, naely: -His-His-Lys-Ala-Lys-Gly-Lys-COOH.  相似文献   

14.
15.
HAH1 is a 68-amino acid protein originally identified as a human homologue of Atx1p, a multi-copy suppressor of oxidative injury in sod1 delta yeast. Molecular modeling of HAH1 predicts a protein structure of two alpha-helices overlaying a four-stranded antiparallel beta-sheet with a potential metal binding site involving two conserved cysteine residues. Consistent with this model, in vitro studies with recombinant HAH1 directly demonstrated binding of Cu(I), and site-directed mutagenesis identified these cysteine residues as copper ligands. Expression of wild type and mutant HAH1 in atx1 delta yeast revealed the essential role of these cysteine residues in copper trafficking to the secretory compartment in vivo, as expression of a Cys-12/Cys-15 double mutant abrogated copper incorporation into the multicopper oxidase Fet3p. In contrast, mutation of the highly conserved lysine residues in the carboxyl terminus of HAH1 had no effect on copper trafficking to the secretory pathway but eliminated the antioxidant function of HAH1 in sod1 delta yeast. Taken together, these data support the concept of a unique copper coordination environment in HAH1 that permits this protein to function as an intracellular copper chaperone mediating distinct biological processes in eucaryotic cells.  相似文献   

16.
The human adenovirus 5 E1B 55-kDa protein is required for efficient nucleocytoplasmic transport of late viral mRNAs. This protein is shown to have RNA-binding activity which maps to a region of the protein with homology to a family of RNA-binding proteins and which has been shown previously to be essential for functionality of the protein in vivo.  相似文献   

17.
Adenovirus (Ad)-based vectors have great potential for use in the gene therapy of multiple diseases, both genetic and nongenetic. While capable of transducing both dividing and quiescent cells efficiently, Ad vectors have been limited by a number of problems. Most Ad vectors are engineered such that a transgene replaces the Ad E1a, E1b, and E3 genes; subsequently the replication-defective vector can be propagated only in human 293 cells that supply the deleted E1 gene functions in trans. Unfortunately, the use of high titers of E1-deleted vectors has been repeatedly demonstrated to result in low-level expression of viral genes still resident in the vector. In addition, the generation of replication-competent Ad (RCA) by recombination events with the E1 sequences residing in 293 cells further limits the usefulness of E1-deleted Ad vectors. We addressed these problems by isolating new Ad vectors deleted for the E1, E3, and the E2b gene functions. The new vectors can be readily grown to high titers and have several improvements, including an increased carrying capacity and a theoretically decreased risk for generating RCA. We have also demonstrated that the further block to Ad vector replication afforded by the deletion of both the E1 and E2b genes significantly diminished Ad late gene expression in comparison to a conventional E1-deleted vector, without destabilization of the modified vector genome. The results suggested that these modified vectors may be very useful both for in vitro and in vivo gene therapy applications.  相似文献   

18.
The A and B isoforms of the pancreatic serine proteinase, chymotrypsin are known to cleave substrates selectively at peptide bonds formed by some hydrophobic residues, like tryptophan, phenylalanine and tyrosine. We found, however, that the B forms of native bovine and recombinant rat chymotrypsins are two orders of magnitude less active on the tryptophanyl than on the phenylalanyl or tyrosyl substrates, while bovine chymotrypsin A cleaves all these substrates with comparable catalytic efficiency. Analysing the structure of substrate binding pocket of chymotrypsin A prompted us to perform an Ala226Gly substitution in rat chymotrypsin B. The specificity profile of the Ala226Gly rat chymotrypsin B became similar to that of bovine chymotrypsin A suggesting that only the amino acid at sequence position 226 is responsible for the differential specificities of chymotrypsin A and B isoenzymes.  相似文献   

19.
Even though all of the energy contained with the UV wavelengths of solar radiation is absorbed within the epidermis and upper layers of the dermis, UV irradiation can suppress immune responses to Ag introduced at distant nonirradiated sites. In addition, data from a number of laboratories have suggested that one consequence of UV exposure is suppressed Th1 cell activation with normal or enhanced Th2 cell activation, resulting in a shift to a Th2-like phenotype. Cytokines secreted by UV-irradiated keratinoctyes, particularly IL-10, have been shown to play a major role in the induction of systemic immune suppression and differential activation of T helper cell subsets. Although IL-10 can influence Th1 cell activation by altering Ag presentation and suppressing IFN-gamma secretion, the major signal for the development of a Th2 response is IL-4. Here we tested the hypothesis that UV irradiation induces IL-4 secretion. UV irradiation induced serum IL-4 in a dose-dependent fashion. Injecting UV-irradiated mice with anti-IL-4 blocked immune suppression. We could find no evidence, however, supporting secretion of IL-4 by UV-irradiated keratinocytes. Rather, we suggest that prostaglandins released by irradiated keratinocytes induce serum IL-4 since treating UV-irradiated mice with a cyclooxygenase-2 inhibitor blocked its production. Moreover, we found that treating UV-irradiated mice with anti-IL-4 suppressed serum IL-10 levels. In addition, injecting normal mice with PGE2 induced serum IL-4 and IL-10. We suggest that UV exposure activates a cytokine cascade (PGE2 --> IL-4 --> IL-10) that ultimately results in systemic immune suppression.  相似文献   

20.
Recent studies have shown that, in Chinese hamster ovary cells transfected with D2-receptor cDNA, CHO(D2) cells, D2 agonists are potent in enhancing the release of [3H]arachidonic acid (AA) induced by stimulation of constitutive purinergic receptors or by application of Ca2+ ionophores. This facilitatory action is further amplified by the concomitant activation of D1 receptors, which per se have no effect on evoked [3H]AA release. Here, we review a series of experiments aimed at examining the molecular mechanism of this synergistic interaction. The results show that, in CHO(D2) cells: (a) application of 8-Br-cAMP or stimulation of constitutive prostaglandin (PG)E2 receptors augment the AA response produced by D2 agonists; (b) in CHO(D2) cells transfected with human beta 2-receptor cDNA, the beta-agonist, isoproterenol, produces a similar effect; (c) the potentiation of [3H]AA release produced by PGE2 and 8-Br-cAMP is prevented by overexpressing either a protein inhibitor of cAMP-dependent protein kinase (PKA) or a mutated form of pKA regulatory subunit incapable of binding cAMP; (d) mock-synergism is obtained in CHO(D2) cells overexpressing the catalytic subunit of PKA; (e) PGE2 is a major AA metabolite in stimulated CHO(D2) cells and its formation may contribute to the effect of D2 agonists on AA release. The results indicate that cAMP-induced activation of PKA represents a likely molecular basis for D1/D2 receptor synergism on AA release. They also suggest that additional membrane receptors, colocalized with D2 and positively linked to adenylyl cyclase, may exert a similar action. Furthermore, stimulation of PGE2 receptors by endogenously produced prostaglandin may participate in AA signaling at the D2 receptor, by providing a paracrine positive feedback loop.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号