首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To identify glial receptor systems in CNS migration, cerebellar granule neuron migration was assayed on glass fibers coated with polylysine, astroglial membranes (AM fibers), or the extracellular matrix proteins collagen (COLL fibers), fibronectin (FN fibers), and laminin (LAM fibers). By video microscopy, granule cells migrated along AM fibers with the cytology, neuron-fiber apposition, and dynamics seen on living glia. The demonstration that immobilized astroglial membranes support neural migration suggests that astroglial receptor systems, in combination with glial fiber geometry, promote CNS neural migration. Moreover, granule neurons migrated rapidly on LAM fibers, moved relatively slowly on FN fibers, and not at all on COLL fibers. Antibody perturbation analyses suggested that, whereas astrotactin provides the neural receptor for migration on astroglial membranes, integrin beta 1 provides the neural receptor for migration on LAM fibers. These results suggest that multiple receptor systems support CNS neural migration.  相似文献   

2.
3.
Anatomical and electrophysiological studies have indicated that a reciprocal projection from the ventral pallidum back to the nucleus accumbens exists and has functional relevance. In this study, the topographical projection from the ventral pallidum to the nucleus accumbens was examined by using retrograde tracing with fluoro-gold iontophoresed in subcompartments of the nucleus accumbens in rats combined with either in situ hybridization for glutamic acid decarboxylase and preproenkephalin mRNA or substance P immunoreactivity. Deposits made into the medial nucleus accumbens preferentially labeled neurons in the medial ventral pallidum, while deposits into the dorsolateral nucleus accumbens, at or lateral to the anterior commissure, labeled primarily cells in the dorsal and lateral ventral pallidum. A mediolateral to rostrocaudal topography was also observed, with the medial deposits preferentially labeling cells in rostral ventral pallidum and the lateral deposits resulting in retrogradely labeled cells in the ventral pallidum below the crossing of the posterior anterior commissure (subcommissural) as well as below the globus pallidus (sublenticular). The majority of cells retrogradely labeled with fluoro-gold were double-labeled for glutamic acid decarboxylase mRNA. In contrast, very few retrogradely labeled neurons in the ventral pallidum were double labeled for mRNA for preproenkephalin. These data demonstrate a topographically organized projection from the ventral pallidum to the nucleus accumbens that is primarily gamma-aminobutyric acid (GABA)-ergic and reciprocal to the GABAergic projection from the nucleus accumbens to the ventral pallidum.  相似文献   

4.
The adult songbird forebrain undergoes neuronal production throughout adulthood, with the production of new neurons in discrete regions of the neostriatal ventricular zone. Upon mitogenesis, these new neurons migrate into the subjacent brain parenchyma along radially directed guide fibers. In long-term ventricular zone explant cultures, derived from the higher vocal center of the adult canary, newly migratory neurons were found to associate preferentially with a characteristic substrate cell type. These small, parvonuclear substrate cells formed tightly packed epithelioid sheets, in which ciliated ependymal cells were common, as recognized by both live observation and electron microscopy. A subpopulation of these cells was immunostained by monoclonal antibody 3A7, which preferentially stains the guide fiber network of the adult avian brain. These 3A7+ cells included ependymal cells and bipolar radial cells, as well as morphologically defined astrocytes. As they matured in vitro, the 3A7+ bipolar radial cells extended long, unbranching fibers, which ultimately traversed the culture substrate. Like ependymal cells, they supported neuronal migration. These cells were likely homologous to radial guide cells in vivo. Thus, neuronal migration in adult avian forebrain culture occurred upon guide cells of ependymal derivation.  相似文献   

5.
In the nervous system, extracellular matrix (ECM) molecules have been shown to have effects on cell migration, process outgrowth and the survival of neurons. Recently we have described the molecular cloning of SC1, a putative brain extracellular matrix glycoprotein, showing partial similarity to the ECM glycoprotein SPARC/osteonectin. We have now examined the expression of SC1 during the development of the rat cerebellum at both the protein and mRNA levels. Our results indicate that SC1 is both temporally and spatially regulated during this process. Bergmann glial cells express SC1 mRNA and the resultant protein is deposited along the length of their radial fibres during the process of granule cell migration in the developing cerebellum. SC1 mRNA and protein is also found in the adult cerebellum, concentrated in the Bergmann glial cells and their radial processes, indicating that this putative ECM molecule continues to play roles in the central nervous system after migration and proliferative events have ceased.  相似文献   

6.
As postmitotic neurons migrate to their final destinations, they encounter different cellular microenvironments, but functional responses of migrating neurons to changes in local environmental cues have not been examined. In the present study, we used a confocal microscope on acute cerebellar slice preparations to examine real-time changes in the shape of granule cells, as well as the mode and rate of their migration as they transit different microenvironments. The rate of granule cell movement is fastest in the molecular layer, whereas their elongated somata and long leading processes remain in close contact with Bergmann glial fibers. Cell movement is slowest in the Purkinje cell layer after granule cells detach from the surface of Bergmann glia and the somata become transiently round, whereas the leading processes considerably shorten. Surprisingly, after entering the internal granular layer, granule cells re-extend both their somata and leading processes as they resume rapid movement independent of Bergmann glial fibers. In this last phase of migration, described here for the first time, most granule cells move radially for >100 micron (a distance comparable to that observed in the molecular layer) until they reach the deep strata of the internal granular layer, where they become rounded again and form synaptic contacts with mossy fiber terminals. These observations reveal that migrating neurons alter their shape, rate, and mode of movement in response to local environmental cues and open the possibility for testing the role of signaling molecules in cerebellar neurogenesis.  相似文献   

7.
Chain migration of neuronal precursors   总被引:1,自引:0,他引:1  
In the brain of adult mice, cells that divide in the subventricular zone of the lateral ventricle migrate up to 5 millimeters to the olfactory bulb where they differentiate into neurons. These migrating cells were found to move as chains through a well-defined pathway, the rostral migratory stream. Electron microscopic analysis of serial sections showed that these chains contained only closely apposed, elongated neuroblasts connected by membrane specializations. A second cell type, which contained glial fibrillary acidic protein, ensheathed the chains of migrating neuroblasts. Thus, during chain migration, neural precursors moved associated with each other and were not guided by radial glial or axonal fibers.  相似文献   

8.
INTRODUCTION: The migration of immature neurons of the cerebrum is genetically programmed from the primitive neuroepithelium before the end of the final mitotic cycle. The orientation of the mitotic spindle determines when a neuroepithelial cell is ready to start migration and the proportion of major genetic material it is destined to receive. DEVELOPMENT: The gene LIS1, defective in lissencephaly type 1 of Miller and Dieker, is expressed in the neuroepithelial cells, in the ependyma and the Cajal-Retzius neurons. These transitory fetal cells are the first neurons of the cerebral cortex. Most of the neurons of the cortical plate arrive by means of glial radial cells which guide them towards their destination. Cell adhesion molecules from the neuroblasts themselves, the glial radial cell, the extracellular matrix and perhaps the ependymal cells are important in adhering the neuroblasts to the glial radial cells. Genetic deficiency of these molecules results in defective migration. The mechanism of cellular movement is still not fully understood. Disorders of migration may also be induced by non-genetic factors, such as infarcts or other lesions which damage or destroy the glial radial fibres during the fetal period.  相似文献   

9.
Topographically distinct populations of radial glial cells in the diencephalon and mesencephalon of neonatal rats and hamsters were transcellularly labeled with wheat germ agglutinin conjugated to horseradish peroxidase (WGA-HRP) and with the lipophilic tracer DiI. A comparison of the histological distribution of the two tracers is suggestive of two different mechanisms of transcellular labeling. Intraocular injections of WGA-HRP resulted in the uptake of exogenously applied WGA-HRP by retinal ganglion cells, followed by anterograde axonal transport and exocytosis within the optic target nuclei. In addition to the transneuronal labeling, which is typical of such injections, we observed the transcellular labeling of the processes and somata of radial glial cells that were topographically associated with the terminal fields of the labeled axons. Similar transcellular labeling of radial glial cells associated with the axon terminal fields of the colliculogeniculate projection to the medial geniculate nucleus was observed following injections of WGA-HRP in the inferior colliculus. The transcellular labeling within the radial glial cells was discontinuous and somatopetally concentrated, indicating the existence of a retrograde active transport mechanism within the radial glial processes subsequent to its uptake following release of tracer from axons. This type of labeling can be referred to as transcellular retrograde glioplasmic transport. In contrast, DiI was used as a tracer through its capacity to diffuse within the plasmalemma. Topographically distinct populations of radial glial cells were transcellularly labeled following placements of DiI in the retina, inferior colliculus, or dorsal thalamus of fixed brains. The radial processes of labeled radial glial cells consistently extended into regions that also contained labeled axons. It is likely that the transcellular radial glial labeling with DiI occurred via transmembranous diffusion. These data indicate that a close structural and functional relation exists between axons and glial cells in the developing brain.  相似文献   

10.
Within the basal forebrain, gamma-aminobutyric acid (GABA)-synthesizing neurons are codistributed with acetylcholine-synthesizing neurons (Gritti et al. [1993] J. Comp. Neurol. 329:438-457), which constitute one of the major forebrain sources of subcortical afferents to the cerebral cortex. In the present study, descending projections of the GABAergic and cholinergic neurons were investigated to the lateral posterior hypothalamus (LHp) through which the medial forebrain bundle passes and where another major forebrain source of subcortical afferents is situated. Retrograde transport of cholera toxin b subunit (CT) from the LHp was combined with immunohistochemical staining for glutamic acid decarboxylase (GAD) and choline acetyl transferase (ChAT) using a sequential peroxidase-antiperoxidase (PAP) technique. A relatively large number of GAD+ neurons (estimated at approximately 6,200), which represented > 15% of the total population of GAD+ cells in the basal forebrain (estimated at approximately 39,000), were retrogradely labeled from the LHp. These cells were distributed through the basal forebrain cell groups, where ChAT+ cells are also located, including the medial septum and diagonal band nuclei, the magnocellular preoptic nucleus, and the substantia innominata, with few cells in the globus pallidus. In these same nuclei, a small number of ChAT+ cells were retrogradely labeled (estimated at approximately 800), which represented only a small percentage (< 5%) of the ChAT+ cell population in the basal forebrain (estimated at approximately 18,000). Both the GAD+ and ChAT+ LHp-projecting neurons represented a small subset of their respective populations in the basal forebrain, distinct from the magnocellular, presumed cortically projecting, basal neurons. In addition to the GAD+ cells in the basal forebrain, GAD+ cells in the adjacent preoptic and anterior hypothalamic regions were also retrogradely labeled in significant numbers (estimated at approximately 5,500) and proportion (> 20%) of the total population (estimated at approximately 30,000) from the LHp. The retrogradely labeled GAD+ neurons were distributed in continuity with those in the basal forebrain through the lateral preoptic area, medial preoptic area, bed nucleus of the stria terminals, and anterior and dorsal hypothalamic areas. Of the large number of cells that project to the LHp in the basal forebrain and preoptic-anterior hypothalamic regions (estimated at approximately 66,000), the GAD+ neurons represented a significant proportion (> 15%) and the ChAT+ neurons a very small proportion (approximately 2%). The relative magnitude of the GABAergic projection suggests that it may represent an important inhibitory influence of the descending efferent output from the basal forebrain and preoptic-anterior hypothalamic regions.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
Corticocortical pathways can be classified as feedback and feedforward, in part according to the laminar distribution of the parent cell bodies. Here, we have developed exhaustive sampling procedures to determine unambiguously this laminar distribution. This shows that individual extrastriate areas in the adult cat have highly stereotyped proportions of supragranular layer neurons with respect to the total population of neurons back-projecting to area 17. During development, these adult laminar patterns emerge from an initially uniform radial distribution through a process of selective reorganization, which is highly specific to each area. Injections of fluorescent retrograde tracers were made in area 17. In areas 19, 20, posteromedial lateral suprasylvian area, and anteromedial lateral suprasylvian area, we defined a projection zone as the region containing retrogradely labeled neurons. In the neonate, counts of labeled neurons throughout the projection zones show constant percentages of 40% in the supragranular layers. During development, there is an area-specific reduction in the percentage of supragranular labeled neurons generating the laminar distributions characteristic of each area. Numbers of labeled neurons were estimated at different eccentricities of the projection zone. This finding indicates that during development there is a relative decrease in the numbers of labeled neurons of the periphery of the projection zone in the supragranular layers but not in the infragranular layers. This decrease is accompanied by a relative decrease in the dimensions of the supragranular projection zone with respect to the infragranular projection zone. These findings suggest that each extrastriate area precisely adjusts the proportions of supragranular layer neurons back-projecting to striate cortex in part by developmental changes in the divergence-convergence values of individual neurons. This shaping of corticocortical connectivity occurs relatively late in postnatal development and could, therefore, be under epigenetic control.  相似文献   

12.
The real-time observation of cell movement in acute cerebellar slices reveals that granule cells alter their shape concomitantly with changes in the mode and rate of migration as they traverse different cortical layers. Although the origin of local environmental cues responsible for these position-specific changes in migratory behavior remains unclear, several signaling mechanisms involved in controlling granule cell movement have emerged. The onset of one such mechanism is marked by the expression of voltage-gated ion channels and neurotransmitter receptors in postmitotic cells prior to the initiation of their migration. Granule cells start their radial migration after the expression of N-type Ca2+ channels and the N-methyl-D-aspartate subtype of glutamate receptors on the plasmalemmal surface. Blockade of the channel or receptor activity significantly decreases the rate of cell movement, indicating that the activation of these membrane constituents provides an essential signal for the translocation of granule cells. Another signal that controls the rate of cell migration is embedded in the combined amplitude and frequency components of Ca2+ fluctuations in the somata of migrating granule cells. Interestingly, each phase of Ca2+ fluctuation controls a separate phase of saltatory movement in the granule cells: The cells move forward during the phase of transient Ca2+ elevation and remain stationary during the troughs. Consequently, the changes in the amplitude and frequency components of Ca2+ fluctuations directly affect granule cell movement: Reducing the amplitude or frequency of Ca2+ fluctuations slows down the speed of cell movement, while the enhancement of these components accelerates migration. These findings suggest that signaling molecules present in the local cellular milieu encountered on the migratory route control the shape and motility of granule cells by modifying Ca2+ fluctuations in the soma through the activation of specific ion channels and neurotransmitter receptors.  相似文献   

13.
Transplant-to-host neuron migration and neurite projection were demonstrated using the mouse allelic Thy-1 system, namely, BALB/c (Thy-1.2) embryonic olfactory bulb (OB) as the graft and 5- to 6-week-old AKR (Thy-1.1) OB as the host. From OB transplants inserted into the host OB, small neurons were often extensively moved mainly in the internal granular layer and showed almost the same morphology as the normal granule neurons. Some large neurons also migrated. Furthermore, inside OB the transplants sent axons mainly into the internal granular layer and dendrites into the external plexiform layer. Outside OB the axons arrived at the anterior olfactory nucleus, primary olfactory cortex, olfactory tubercle, and cortical nucleus of the amygdaloid complex. These fibers appeared to terminate in normal target areas. These findings show that the olfactory system at 5-6 weeks of age still has the capacity to integrate newly migrated neurons and to receive newly growing fibers from the transplant.  相似文献   

14.
Retroviral-mediated gene transfer was used to study clonal patterns of proliferation, migration, and dispersal in the brainstem of the chicken embryo. Clones were generated at stages 13-17 (Hamburger and Hamilton, 1951), a period of neurogenesis in the brainstem neural tube subsequent to the formation of rhombomeres. Clones were examined in separate experiments at stages 24-27, when many neurons migrate and differentiate; at stages 28-29, when brainstem nuclei begin to form; and at stages 34-35, when brainstem nuclei are fully formed. Stages 24-29 are characterized by a general variability in proliferative kinetics and migratory behavior. Clone sizes range from 1 to 29 cells, and migration patterns range from strictly radial (i.e., normal to the ventricular surface) to combined radial and tangential (i.e., perpendicular to the radial component). There is, however, an underlying systematic variation: (1) clones exhibiting tangential migration contain on average more cells than clones exhibiting only radial migration, and (2) the proportion of tangentially migrating clones increases from medial to lateral. By stages 34-35 some individual clones have apparently dispersed to disparate neuronal groups. The regional diversity observed among clones suggests that position along the mediolateral axis may determine the proliferative potential of progenitors and the migratory behavior and subsequent dispersal of their descendants.  相似文献   

15.
Previous research from this laboratory has shown that substance P-immunoreactive (SP) terminals synapse upon negative chronotropic vagal preganglionic neurons (VPNs), but not upon negative dromotropic VPNs, of the ventrolateral nucleus ambiguus (NA-VL). Moreover, SP agonists injected into NA-VL cause bradycardia without decreasing AV conduction. In the current study, we have: (1) defined the electron microscopic characteristics of the SP neurons of NA-VL in dog; and (2) tested the hypothesis that SP nerve terminals synapse upon negative inotropic VPNs of NA-VL, retrogradely labeled from the cranial medial ventricular (CMV) ganglion. Numerous SP terminals and a few SP neurons were observed in the vicinity of retrogradely labeled neurons. SP terminals were observed forming synapses with unlabeled dendrites and with SP dendrites, but never with the retrogradely labeled neurons. Together, these results and earlier findings suggest that SP agonists may be able to induce bradycardia without decreasing AV conduction or ventricular contractility.  相似文献   

16.
We have devised a simple method that combines retrograde labeling of projecting neurons and in situ hybridization histochemistry to examine mRNA expression in the retrogradely labeled neurons. First, projecting neurons were retrogradely labeled in vivo by injection of the lipophilic neuronal tracer Dil. The fluorescence of the labeled neurons in the brain slices was photoconverted into stable DAB precipitate by green light illumination. The slices were cut into thinner sections and processed for detection of specific mRNA by in situ hybridization. Using this highly sensitive method, we demonstrate here that the corticospinal tract neurons in newborn rats express mRNA for the cell adhesion molecule L1. TAG-1 mRNA was not detected in these neurons. Therefore, the present method provides an important tool to study the molecular expression of projection neurons during the development of neuronal circuitry.  相似文献   

17.
The dorsal cochlear nucleus (DCN) is one of three nuclei at the terminal zone of the auditory nerve. Axons of its projection neurons course via the dorsal acoustic stria (DAS) to the inferior colliculus (IC), where their signals are integrated with inputs from various other sources. The DCN presumably conveys sensitivity to spectral features, and it has been hypothesized that it plays a role in sound localization based on pinna cues. To account for its remarkable spectral properties, a DCN circuit scheme was developed in which three inputs converge onto projection neurons: auditory nerve fibers, inhibitory interneurons, and wide-band inhibitors, which possibly consist of Onset-chopper (Oc) cells. We studied temporal and binaural properties in DCN and DAS and examined whether the temporal properties are consistent with the model circuit. Interneurons (type II) and projection (types III and IV) neurons differed from Oc cells by their longer latencies and temporally nonlinear responses to amplitude-modulated tones. They also showed evidence of early inhibition to clicks. All projection neurons examined were inhibited by stimulation of the contralateral ear, particularly by broadband noise, and this inhibition also had short latency. Because Oc cells had short-latency responses and were well driven by broadband stimuli, we propose that they provide short-latency inhibition to DCN for both ipsilateral and contralateral stimuli. These results indicate more complex temporal behavior in DCN than has previously been emphasized, but they are consistent with the recently described nonlinear behavior to spectral manipulations and with the connectivity scheme deduced from such manipulations.  相似文献   

18.
Behavioral responses to novelty in an open field and spatial learning in a radial maze with four arms out of eight reinforced were tested in male and female CFY and Long-Evans rats. Subsequently, the sizes of the total hippocampi and of various hippocampal cell layers and terminal fields at the midseptotemporal level were measured in Timm-stained sections. No strain differences were found in the open field (except for defecation). In the radial maze, Long-Evans rats showed better spatial reference memory capabilities than rats of the CFY strain. The relative sizes of the intra- and infrapyramidal mossy fiber (IIP-MF) projections did not differ between the strains. Within the more variable CFY strain, a positive correlation between the size of the IIP-MF projection and radial maze performance was found. The absolute sizes of the entire hippocampi and all hippocampal layers at the midseptotemporal level were larger in the CFY strain. The size of the suprapyramidal mossy fiber projection was related to the number of granule cells and to the ratio between granule and CA3 pyramidal cells. In contrast, the size of the IIP-MF projection did not correlate with either of these variables. The results indicate that the size of the mossy fiber projection may be determined mainly by the available postsynaptic surface on the dendrites of CA3 pyramidal neurons. Furthermore, an increased number of granule cells and their larger projection to the apical dendrites of pyramidal neurons does not appear to result in physiological changes with behavioral consequences.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Neurons in the dorsal cochlear nucleus (DCN) can be classified into three major physiological classes on the basis of responses to pure tone and broadband noise stimuli. A circuit diagram that associates these classes with different cell types has been proposed. According to this proposal, type II cells are inhibitory interneurons that respond well to tones and poorly to broadband noise, type IV cells are projection neurons with the opposite behavior, and type III cells are an inhomogeneous class with intermediate properties. To test the associations proposed, I compared the response type distribution in the DCN with its output tract, the dorsal acoustic stria (DAS), in chloralose-anesthetized cats. Axonal recordings in the DAS showed type III and IV responses as in DCN, but no type II responses. Compared with reports in decerebrate animals, fewer type IV neurons were encountered having sustained inhibition that generated strongly nonmonotonic responses to tones in both DCN and DAS. The presence of type II responses in the nucleus, but not in the output tract, offers strong support for the proposed association with DCN interneurons. On the other hand, the distinction between type III and IV responses needs refinement because the differences are only graded and because both types of responses occur in DAS, which shows that they are both associated with projection neurons.  相似文献   

20.
Tissue plasminogen activator activity in the developing cerebellum, as quantified by zymography of cerebellar homogenates from embryonic day (E) 17 to adult mice, shows a peak of activity at postnatal day (P) 7, followed by a steady 75% decrease into adulthood. Northern blot analysis reveals a similar pattern for tissue plasminogen activator mRNA levels, which are low at E17 but increase dramatically, reaching their highest levels of specific mRNA/micrograms RNA in P1-P7 mice and declining about threefold in the adult mouse. In situ hybridization of whole mouse brain sections with a tissue plasminogen activator antisense cRNA probe shows pronounce reactivity in the cerebellum. Although some binding is associated with the cerebellar meninges, the external granule layer is devoid of tissue plasminogen activator mRNA at all ages. However, highly labeled elongated cells, which also bind antibody to neuronal nuclear antigen and are adjacent to Bergmann glial fibers (i.e., migrating granule neurons), are readily visible throughout the molecular and Purkinje layers at P7 and P14. In the adult mouse cerebellum, tissue plasminogen activator mRNA labeling is restricted to cells in the Purkinje/internal granule layers. Thus, tissue plasminogen activator gene expression is induced as granule neurons leave the external granule layer and begin their inward migration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号