共查询到20条相似文献,搜索用时 15 毫秒
1.
使用神经网络进行漏洞检测的方案大多基于传统自然语言处理的思路,将源代码当作序列样本处理,忽视了代码中所具有的结构性特征,从而遗漏了可能存在的漏洞.提出了一种基于图神经网络的代码漏洞检测方法,通过中间语言的控制流图特征,实现了函数级别的智能化代码漏洞检测.首先,将源代码编译为中间表示,进而提取其包含结构信息的控制流图,同... 相似文献
2.
针对常规漏洞检测技术提取漏洞特征困难,存在高误报率和高漏报率的问题,提出了一种基于多关系结构图神经网络以及关系结构图注意力机制的源代码漏洞检测模型。首先通过代码属性图提取代码的语法和语义信息,并按照不同的语义关系划分成不同的关系结构图,实现了代码表示能力的增强。然后使用图神经网络对图结构进行表示学习,在网络模型中引入后向边以及关系结构图注意力机制,达到了更有效的学习漏洞特征的效果。最后为了验证模型的优势,在大型真实数据集上对模型进行了广泛评估,实验结果证明了该方法有效提高了漏洞检测能力。 相似文献
3.
随着软件的复杂程度越来越高,对漏洞检测的研究需求也日益增大.软件漏洞的迅速发现和修补可以将漏洞带来的损失降到最低.基于深度学习的漏洞检测方法作为目前新兴的检测手段,可以从漏洞代码中自动学习其隐含的漏洞模式,节省了大量人力投入.但基于深度学习的漏洞检测方法尚未完善,其中函数级别的检测方法存在检测粒度较粗且检测准确率较低的问题,切片级别的检测方法虽然能够有效减少样本噪声,但是仍存在以下两个方面的问题.一方面现有方法大多采用人工漏洞数据集进行实验,因此其在真实环境中的漏洞检测能力仍然存疑;另一方面,相关工作仅致力于检测出切片样本是否存在漏洞,而缺乏对检测结果可解释性的考虑.针对上述问题,本文提出了基于图神经网络的切片级漏洞检测及解释方法.该方法首先对C/C++源代码进行规范化并提取切片,以减少样本冗余信息干扰;其次采用图神经网络模型进行切片嵌入得到其向量表征,以保留源代码的结构信息和漏洞特征;然后将切片的向量表征输入漏洞检测模型进行训练和预测;最后将训练完成的漏洞检测模型和待解释的漏洞切片输入漏洞解释器得到具体的漏洞代码行.实验结果显示,在漏洞检测方面,该方法对于真实漏洞数据的检测F1分数达到75.1%,相较于对比方法提升了41.2%-110.4%.在漏洞解释方面,该方法在限定前10%的关键节点时准确率可以达到73.6%,相较于两种对比解释器分别提升8.9%和24.9%,且时间开销分别缩短42.5%和15.4%.最后,该方法正确检测并解释了4个开源软件中59个真实漏洞,证明了其在现实世界漏洞发掘方面的实用性. 相似文献
4.
软件漏洞逐年递增,安全问题愈发严重。在软件项目的交付阶段对原始代码进行漏洞检测可以有效避免后期运行时的安全漏洞,而代码漏洞检测依赖于有效的代码表征。传统的基于软件度量的表征方法与漏洞关联性较弱,难以对漏洞信息进行有效表征。近年来,机器学习为漏洞的智能化发现提供了新的思路,但该方法同样可能遗漏关键的代码特征信息。针对以上问题,文中在传统抽象语法树(AST)上增加控制依赖、数据依赖和语句序列边生成增强抽象语法树(EXAST)图结构,对原始代码进行表征以更好地处理代码结构化信息,并采用词向量嵌入算法(Word2Vec)将代码信息初始化为机器能够识别和学习的数值向量。同时,在传统的图神经网络(GNN)中引入门控循环单元(GRU),构建图识别模型,以缓解梯度消失并加强图结构中长期信息的传播,从而增强了代码执行的时序关系,提高了漏洞检测的准确度。最后在SARD公开数据集上对模型进行对比测试,实现了函数粒度的代码漏洞检测,相比传统的漏洞检测方法,准确率和F1分值分别最大提高了32.54%和44.99,实验结果证明了所提方法对代码漏洞检测的有效性。 相似文献
5.
随着信息安全愈发严峻的趋势,软件漏洞已成为计算机安全的主要威胁之一.如何准确地挖掘程序中存在的漏洞,是信息安全领域的关键问题.然而,现有的静态漏洞挖掘方法在挖掘漏洞特征不明显的漏洞时准确率明显下降.一方面,基于规则的方法通过在目标源程序中匹配专家预先定义的漏洞模式挖掘漏洞,其预定义的漏洞模式较为刻板单一,无法覆盖到细节特征,导致其存在准确率低、误报率高等问题;另一方面,基于学习的方法无法充分地对程序源代码的特征信息进行建模,并且无法有效地捕捉关键特征信息,导致其在面对漏洞特征不明显的漏洞时,无法准确地进行挖掘.针对上述问题,提出了一种基于代码属性图及注意力双向LSTM的源码级漏洞挖掘方法.该方法首先将程序源代码转换为包含语义特征信息的代码属性图,并对其进行切片以剔除与敏感操作无关的冗余信息;其次,使用编码算法将代码属性图编码为特征张量;然后,利用大规模特征数据集训练基于双向LSTM和注意力机制的神经网络;最后,使用训练完毕的神经网络实现对目标程序中的漏洞进行挖掘.实验结果显示,在SARD缓冲区错误数据集、SARD资源管理错误数据集及它们两个C语言程序构成的子集上,该方法的F1分数分别达... 相似文献
6.
7.
Java反序列化漏洞由于其很容易被非法利用,已经成为目前最具威胁的软件漏洞之一。在开发过程中,事先对软件所使用的第三方公共组件库进行检测,提前发现并防御潜在的反序列化漏洞尤为重要。目前已有的反序列化漏洞检测,主要有基于规则匹配和基于污点分析两种检测方法,前者采用白名单或者黑名单的方法无法发现未知的反序列化漏洞,而后者因其对漏洞调用链检测能力有限,故漏报和误报率高。为了弥补已有方法的缺陷,提出了一种基于图网络的Java反序列化漏洞调用链检测方法 SerialFinder,该方法利用图结构充分表达反序列化漏洞调用链的语义信息,训练图同构网络模型,进而可以检测潜在的反序列化漏洞调用链。SerialFinder在多个第三方组件库进行验证,与业界最先进的Java反序列化漏洞调用链检测方法 Gadget Inspector进行对比,结果表明,SerialFinder在三个公共组件库上的平均命中率为64%,比Gadget Inspector高31%。 相似文献
8.
基于关联性的漏洞评估方法 总被引:1,自引:0,他引:1
为了更加有效地评估漏洞威胁, 在原有的基于关联性漏洞评估方法的基础上, 从漏洞的可利用性出发, 分析了通用漏洞评估系统(CVSS)作为漏洞可利用性评价指标的缺点。在改进CVSS评价指标的基础上, 提出了更为合理的漏洞可利用性评估体系, 并改进了原有的漏洞评估方法。该方法能够有效地挖掘漏洞自身特点, 科学地进行漏洞评估, 并通过实验验证了该方法的合理性和有效性。 相似文献
9.
协同显著性检测指从一组相关图像集中识别出共同出现且显著的物体,其难点是如何挖掘与利用图像帧内、帧间的显著性线索.文中提出一种统一分级图神经网络的协同显著性检测方法.首先利用超像素分割算法将图像分割,并提取图像帧内分级显著性特征构建图模型;然后挖掘图像帧间分级显著性图嵌入,形成统一的二维分级特征体系;最后充分利用图像帧内和图像帧间的线索,提出几何注意力模块.在iCoSeg数据集上的消融实验结果表明,所提出的统一分级图神经网络中各个模块均是有效的;所提方法基于iCoSeg数据集测试的最大F-measure、平均绝对误差以及S-measure分别为0.848 6, 0.107 6和0.813 4,可以媲美或优于其他9种对比方法,最终获得的显著性图的高亮一致性和边缘均得到明显的改善. 相似文献
10.
目前,大部分人脸识别方法依赖CNN,通过级联融合局部特征实现特征提取,却忽视全局语义空间信息且训练代价巨大。基于Transformer的方法相较于CNN,参数更少且能有效表征全局特征信息,但对全局各特征区域相对空间依赖关系表征不足。针对以上问题,提出了一种视觉图神经网络的人脸识别方法,引入GCN作为特征提取网络,捕获邻近特征关系并建立全局特征区域的依赖性;结合ECA模块,提高模型对人脸特征感知能力。此外,基于Triplet Loss与Center Loss,构建联合损失函数作为目标函数,约束类内特征,提高模型泛化能力。本方法在LFW、CFP和AgeDB-30基准测试集上取得较好的效果,且模型参数量与计算复杂度更少。 相似文献
11.
图结构因其在序列推荐场景中的自然适应性而备受关注,而现有的基于图神经网络的会话序列推荐算法虽然能够利用图结构信息达到较好的推荐效果,但是没有考虑用户在会话序列中的重复点击行为和项目之间的复杂转换,且未很好地利用图中复杂的结构信息,导致推荐的效果受到一定程度的限制。提出有向与无向信息同注意力相融合的图神经网络序列推荐算法,并基于推荐算法给出项目隐含向量建模算法,结合会话序列图中的有向结构信息与无向结构信息,通过考虑用户的重复点击行为和引入注意力机制建立会话中点击项目的复杂转换模型。图节点在特征传播的过程中平衡邻居节点信息与自身信息的比例,以更准确地预测推荐过程中生成的会话向量。在Diginetica、Yoochoose 1/64、Yoochoose 1/4 3个数据集上的实验结果表明,与SR-GNN、TAGNN算法相比,该算法精度最高提升4.34%,能够更好地预测用户在会话中的下一次点击精度。 相似文献
12.
情感分析是自然语言处理领域的重要任务之一,情感分析任务包含显式情感分析和隐式情感分析。由于隐式情感不包含显式情感词语,情感表达更加委婉,所以面临更大的挑战。提出基于图注意力神经网络的隐式情感分析模型ISA-GACNN(Implicit Sentiment Analysis Based on Graph Attention Convolutional Neural Network),构建文本和词语的异构图谱,使用图卷积操作传播语义信息,使用注意力机制计算词语对文本情感表达的贡献程度。针对多头注意力保存重复信息问题,使用注意力正交约束使得不同注意力存储不同的情感信息;针对情感信息分布不均的情况,提出注意力分值约束使模型关注部分重要词语。在隐式情感分析评测数据集上验证模型效果,所提出模型的[F]值达到91.7%,远高于文献中的基准模型;对注意力机制进行分析,验证了正交约束和分值约束的有效性。 相似文献
13.
传统的推荐模型主要是基于用户或者基于项目层面进行建模分析,而未考虑过用户与项目之间存在的协作信号。针对上述问题,提出结合图神经网络的推荐模型,将用户与物品数据构造为图结构,将图结构输入神经网络中挖掘用户与物品之间的协作信号,使得用户和物品得到更具体的特征表示。实验结果表明,这一改进在一定程度上提高了模型的准确度,使得模型推荐效果得到提升。 相似文献
14.
为解决基于循环神经网络及其改进的方法在处理会话序列数据时只考虑序列行为,无法从有限的点击中获得准确的会话向量表示的问题,提出一种基于图神经网络和时间注意力的会话序列推荐算法。结合门控图神经网络和项目浏览时间信息,有效建模会话中所有点击项目之间的复杂转换,更充分利用用户浏览信息,使会话向量表示的计算更准确、区分度更高。实验结果表明,该方法能够提高推荐结果的准确性,更为有效地预测用户的下一次点击。 相似文献
15.
艾佳丰 《电脑编程技巧与维护》2023,(8):3-6+76
异常检测在许多领域都具有重要意义,它可以帮助人们及时发现数据错误或缺失,而传统的方法只能对单一因素进行异常识别。随着数字时代的到来,时序数据往往表现出数据庞大、复杂、维度高等特点,传统异常检测方法由于计算的可扩展性较弱,存在维度灾难问题,在多维数据场景中经常表现不准。为了提高异常检测精度及捕捉多维数据的关联性,在此提出一种基于改进图神经网络的多维序列异常检测模型,选择图偏差网络(GDN)作为基础框架,使用Transformer模型替换了原模型中的预测部分,对相邻时间序列的未来值进行预测,以此来捕捉时间序列的特征,学习时间序列之间的依赖关系,提高异常检测精度。实验结果表明,在3个公开的数据集上,该方法可获得较高的精确率和计算效率。 相似文献
16.
自推荐系统出现以来,有限的数据信息就一直制约着推荐算法的进一步发展。为降低数据稀疏性的影响,增强非评分数据的利用率,基于神经网络的文本推荐模型相继被提出,但主流的卷积或循环神经网络在文本语义理解和长距离关系捕捉方面存在明显劣势。为了更好地挖掘用户与商品之间的深层潜在特征,进一步提高推荐质量,提出一种基于Ro BERTa和图增强Transformer的序列推荐(RGT)模型。引入评论文本数据,首先利用预训练的Ro BERTa模型捕获评论文本中的字词语义特征,初步建模用户的个性化兴趣,然后根据用户与商品的历史交互信息,构建具有时序特性的商品关联图注意力机制网络模型,通过图增强Transformer的方法将图模型学习到的各个商品的特征表示以序列的形式输入Transformer编码层,最后将得到的输出向量与之前捕获的语义表征以及计算得到的商品关联图的全图表征输入全连接层,以捕获用户全局的兴趣偏好,实现用户对商品的预测评分。在3组真实亚马逊公开数据集上的实验结果表明,与Deep FM、Conv MF等经典文本推荐模型相比,RGT模型在均方根误差(RMSE)和平均绝对误差(MAE)2种指标上有显著... 相似文献
17.
在点云中进行三维目标检测时,小目标和复杂背景下目标的检测精度不足是突出的问题之一。针对该问题,提出了一种基于图采样和图注意力机制的3D点云目标检测方法。减小基准网络下采样体素大小以保持小目标的点云密度;引入图采样降低在点云中构造拓扑图的代价;通过对图采样前后的图分别嵌入自注意力机制,提高网络的特征提取能力。在KITTI数据集上与基准网络Point-GNN相比,对汽车目标在复杂场景上的检测精度提升了1.96%,对行人与骑行者目标在中等难度场景和复杂场景上的检测精度分别提升4.21%和2.57%;与Point-GNN相比,减少了15%的训练时间。实验结果表明,设计的方法对于3D点云中小目标和复杂背景下目标的检测更加有效,图采样方法还能够提升模型的训练效率。 相似文献
18.
交通预测在城市规划中具有重要意义.由于交通流具有复杂的时空相关性,交通预测的任务一直面临着许多挑战.现有的方法通常利用上层区域图上的观测特征序列来学习和评价交通状况,而忽略了具有丰富语义的底层路网.为了克服这一缺点,本文将空间数据建模为观测图和隐藏图,并提出了一种新的交通预测框架:区域-道路时空图网络(R2RSTGN).为了学习道路网络和观测到的交通信息之间隐藏的相互作用,本文同时考虑区域和细粒度道路并提出了一种压缩注意力机制,可以为预测提供解释结果.在两个真实数据集上的实验结果验证了该框架的有效性. 相似文献
19.
股票市场是金融市场关键组成部分,因此对股票市场波动的研究对合理化控制金融市场风险、提高投资收益提供了重要支持,一直以来都是学术界和相关业界的关注焦点,然而,股票市场会受到各种因素的影响。面对股票市场中多源化、异构化的信息,如何高效挖掘、融合股票市场的多源异构数据具有挑战性。为了充分解释不同信息及信息间相互作用对于股票市场价格波动的影响,提出一种基于多重注意力机制的图神经网络来预测股票市场的价格波动。首先,引入关系维度构建股票市场交易数据和新闻文本的异构子图,并利用多重注意力机制实现图数据的融合;其次,通过图神经网络门控循环单元(GRU)进行图分类,在此基础上完成对股票市场中上证综合指数、沪深300指数、深证成份指数这三个重要指数波动的预测。实验结果表明,从异构信息特性角度,相较于股票市场交易数据,股市新闻信息对于股票价格影响存在滞后性;从异构信息融合角度,所提方法与支持向量机(SVM)、随机森林、多核k-means (MKKM)聚类等算法相比,预测准确率分别提升了17.88个百分点、30.00个百分点和38.00个百分点,并进行了模型交易策略的量化投资模拟。 相似文献
20.
软件应用持续升级换代,漏洞形式也更加变化多端,为进一步提升漏洞检测有效性,保障软件应用与系统安全,以可变形卷积神经网络为技术支持,构建一种软件漏洞检测算法.采用卷积层、全连接层等架构用于输入软件漏洞特征的子网络,利用网格生成器将空间变换参数变为一个参数化采样网格,完成输入特征映射采样;求取权值与采样值的所有乘积和,根据... 相似文献