首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Inactivation of C. parvum oocysts was measured in a small-scale static mixer ozone contacting system in series of challenge experiments. Measured inactivation ranged from 1.4 to 3.0 log-units, depending on the dissolved ozone by contact time product (C avg ) in the contactor, and was equivalent to or slightly better than that predicted for a perfect plug flow contactor with the same dissolved ozone profile. Efficient and predictable inactivation of C. parvum in drinking water may be achieved in a two-stage, continuous-flow ozone contacting system composed of a gas dissolution system employing a static mixer, and followed by a liquid phase contactor, at least at small-scale.  相似文献   

2.
The effect of gas-liquid contacting conditions in a static mixer on ozone transfer efficiency and reduction of Bacillus subtilis spores was studied in an experimental ozone contactor. An empirical mathematical model was developed that related the transfer efficiency in the experimental system to the superficial liquid velocity in the mixer, the gas-liquid flow rate ratio and the height of the down-stream bubble column. Spore reduction was determined primarily by the dissolved ozone concentration-time (Cavgtm) product in the reactive flow segment and was independent of the gas-liquid contacting conditions in the static mixer. In an integrated ozone contacting system, the static mixer should be designed to maximize ozone mass transfer while the reactive flow segment should be designed for efficient microorganism reduction.  相似文献   

3.
The aim of this study was to compare the pressure drop (Δp) generated by a static mixer with sieve plates in two-phase downflow (water as a continuous phase), and the mass transfer efficiency (kLa, a) with the performance of other static mixers (Sulzer, Kenics, Karman, etc.). The relationships for Δp, kLa and interfacial area (a) calculation depending on liquid and gas phase velocities and geometry of the plates (sieves) in this static mixer are presented. kLa was found to be strictly proportional to the power consumption (P/V) and its values were quite close to those obtained in Sulzer & Kenics mixers with an 8-element mesh. Enhancement factors for oxygen absorption in the sodium sulphite solution and for ozone absorption in Lake Ülemiste water were calculated and the plausible values of the interfacial area (a) were estimated.  相似文献   

4.
Ozone is used in drinking water treatment as a biocide, as an oxidant and as a pretreatment in order to improve the performance of subsequent processes. Increasing concern over the quality of drinking water has led to a number of new stringent regulations in the control of chemical and microbiological contaminants. Disinfection deals with the concept of “CT”, which is the need to maintain a certain minimum concentration for a given time. Under ideal laboratory conditions, it is 0.4 mg O3/L for 4 min. In practice, since the method for the CT determination has not been finalized by the EPA, “T” can be the minimum detention time of 90% of total flow, and “C” can be a measured ozone residual at the outlet of cells of the contactor. New standards for micropollutants in drinking water imply an optimization of the ozonation step, by improving the ozone transfer from gas to water, and the control of the detention time as well as ozone residual within the contactor.

All these considerations have led us to use static mixers to transfer ozone into water. This process enables us to control the ozone concentration in water and detention time. It is a very simple system, with very low maintenance requirements due to the lack of moving parts. Civil engineering is minimized. A pilot scale study is presented here. It took place at the Méry-sur-Oise water treatment plant, on a pilot plant working at 8-12 m3/h. It is composed of a static mixer for the transfer of ozone from gas to liquid, linked to an air lift to separate gas from liquid, providing ozonated water.

The optimization of transfer was achieved by studying the impact of water flow, gas flow and ozone concentration in the gas. It is possible to reach 90% of transfer in less than 15 s. Headloss (ΔP) across the mixer is a function of gas and water flows and remains economically very acceptable as 0.15 bar for 12 m3/h.

Atrazine removal was studied using a static mixer, an air lift and a contact pipe 80-m long, providing an optimum contact time phase, working as a plug flow reactor. Ozone and H2O2/O3 treatments were compared. The maximum reduction of atrazine concentrations (e.g., for an infinite contact time) is a function of the amount of transferred ozone, but H2O2 influences the kinetics of the reaction. In the presence of H2O2 with a ratio of H2O2 to O3 of 0.4 w/w, maximum elimination is reached in 2 min 30 s.

The effect of such treatments on environmental bacteria also was followed. A counting of total germs at 20°C showed a decrease of 1- to 3-logs 10 after 1 min 30 s of contact time for about 2 mg/L of transferred ozone. No significant difference between treatments with or without H2O2 was shown. The same conclusions were obtained from heterotrophic plate counts (37°C) and epifluorescence countings.  相似文献   


5.
Hot-melt extrusion of a bio-sourced polyamide has been implemented in a single-screw extruder with supercritical carbon dioxide injection. CO2 acts as a plasticiser in the extruder barrel and as a physical blowing agent at the die. To insure a better mixing and dissolution of the CO2 into the polymer melt, addition of a static mixer between the screw tip and the die was tested. The effect of both the static mixing element and the CO2 injection on the melt flow behaviour has been elucidated. A recent technique of in-line Raman spectroscopy was implemented to make a residence time distribution study, using titanium dioxide as a tracer. The use of a static mixer exerts a major modification on the flow behaviour: it improves mixing by enhancing dispersion. In addition, the structure of the manufactured products was studied: the static mixer led to more homogeneous porous structure. The broad range of CO2 incorporation (up to 25%, w/w) into the melt led to the manufacture of foams with adjustable porosity from 15 to 70%.  相似文献   

6.
In wet limestone flue gas desulfurization (FGD), elevated fly ash loadings can initiate the formation of liquid phase aluminum/fluoride (A1F n ) complexes which inhibit limestone dissolution, causing depressed slurry pH and reduced SO2 removal. This phenomenon was examined in a bench-scale pilot FGD scrubber system, and in batch reactor experiments, under conditions similar to those in full-scale utility FGD systems. It was shown that leachability of aluminum from fly ash is a critical factor, and depends on pH, fluoride concentration, and solid material properties. Reductions in limestone dissolution rate of more than an order of magnitude were measured at soluble aluminum concentrations as low as l0ppm. The implications for full-scale FGD systems reinforce the importance of maintaining efficient particulate removal upstream of the FGD scrubber.  相似文献   

7.
Bromate concentration, ozone lifetime and ozone exposure (CT value) measured in bottled water in full-scale runs, were in good agreement to those measured in laboratory experiments. Ozone lifetime in bottled water was high enough to result in a CT value greater than 5 even for ozone dose as low as 0.1?mgO3/L, at a water pH of 7.6. Bromate was gradually formed during the ozone lifetime. Bormate formation and ozone exposure were significantly influenced by pH. In full-scale runs, an ozone dose of 0.15?mgO3/L at pH=7.6 resulted in a CT of 10.3 and a bromate concentration of 13.5?µg/L, while at pH=7.25 the values of CT and BrO3 ? were 12.6 and 9.6?µg/L, respectively. By decreasing further the pH to 6.8, an increase of CT value to 15.8 and a reduction of bromate to 5.5?µg BrO3 ?/L were observed. In addition, results in full-scale runs showed that ozone exposure and bromate concentrations were linearly related to ozone dose in the working range of 0.1 to 0.25?mgO3/L.  相似文献   

8.
An innovative approach to minimize bromate formation using sequential chlorine and ammonia (Cl2-NH3 process) was developed at pilot scale and validated in a full-scale drinking water facility. Pilot-scale results showed the Cl2-NH3 process minimized bromate formation by 65–95% compared to 40–70% using ammonia only. A 90-day full-scale evaluation confirmed the Cl2-NH3 process could prevent bromate concentrations from exceeding 10 μg/L. Full-scale implementation of the Cl2-NH3 process allowed an increase in ozone exposure level from 3.0 mg-min/L to 8.6 mg-min/L at 15.1°C. The increased exposure level is important as drinking water utilities strive to meet more stringent drinking water regulations such as Cryptosporidium inactivation.  相似文献   

9.
For the nitrogen oxide removal processes, high performance gas mixer is deeply needed for the injection of NH3 or O3. In this study, a new type of double swirl static mixer in gas mixing was investigated using computational fluid dynamics (CFD). The results obtained using Particle Image Velocimetry (PIV) correlated well with the results obtained from simulation. The comparisons in pressure loss between the experimental results and the simulation results showed that the model was suitable and accurate for the simulation of the static mixer. Optimal process conditions and design were investigated. When L/D equaled 4, coefficient of variation (COV) was < 5%. The inlet velocity did not affect the distributions of turbulent kinetic energy. In terms of both COV and pressure loss, the inner connector is important in the design of the static mixer. The nozzle length should be set at 4 cm. Taking both COV and pressure loss into consideration, the optimal oblique degree is 45°. The averaged kinetic energy changed according to process conditions and design. The new static mixer resulted in improved mixing performance in a more compact design. The new static mixer is more energy efficient compared with other SV static mixers. Therefore, the double swirl static mixer is promising in gas mixing.  相似文献   

10.
New standards for drinking water disinfection require better optimization of the ozonation stage on the basis of the concentration×contact time (CT) concept, and production of ozone from pure oxygen at higher concentrations presumes application of the new type of contactors operating efficiently at lower gas/liquid volumetric ratios. One possible construction to meet these requirements is a downstream static mixer with sieve plates. At higher flow rates of liquid in this mixer, the interfacial area may reach 10,000m2/m3 at energy dissipation 1–5kW/m3. Due to the very intensive hydrodynamic regime the ozone utilization degree in the gas phase reaches 98–100% in natural lake water ozonation. Mathematical simulation of lake water ozonation in this mixer indicated that the process proceeds mostly in the diffusion or kinetic regime depending on the operating parameters. The dominating parameters besides the sieve geometry are the liquid flow rate in the holes of the sieves and the volumetric liquid/gas ratio.  相似文献   

11.
In the present study, we developed a novel simulation model of the U-tube reactor for treating drinking water, which is composed of a coaxial inner tube serving as an efficient concurrent down-flow ozone dissolver and an outer column carrying out reactions between ozone and organic substances including odorous materials (2-methylisoborneol: 2-MIB) dissolved in the raw water. We assume that the U-tube is composed of a plug flow section (inner tube) followed by a tanks-in-series section (outer bubble column) and take into account the effect of the hydrostatic pressurization on the flow and absorption equilibrium for the gaseous components including ozone and other inactive species in developing the mass balance models. An algorithm is constructed of the differential multiple mass balance equations for the inner tube sections and multiple difference mass balance equations in the series tanks in the outer column section to enable the scale-up from a pilot plant to a full-scale plant. The gas holdup and gas-liquid mass transfer coefficient were measured in a model reactor and correlated for the use of the simulation calculation. Available literature data and correlations on the rates of reactions between ozone and organic substances including odorous material 2-MIB, gas-liquid equilibrium for active and inactive gases and axial fluid mixing properties are also incorporated in the simulation calculation. The simulation results well explained the available data of the ozone absorption efficiency and the removal efficiency of the odorous material in a pilot U-tube reactor. The simulation procedure was also successfully extended to verify the performance of a full-scale U-tube reactor. It is shown that the ozone absorption is practically a single function of the gas/liquid ratio while the removal efficiency of the odorous material is a single function of the ozone dose for a specified U-tube configuration.  相似文献   

12.
通过静态混合器级数选择,并在相同条件下与釜式反应中和与水洗效率比较,对处理能力及二级水洗等进行中试研究,将该技术应用到工程设计。  相似文献   

13.
For real-time control of ozonation processes in water works, a sequencing batch reactor was constructed to measure the ozone decay rate constant (kO3) in short time intervals of about 15 min. The batch reactor is filled during the production process, immediately after dissolving ozone in water by a static mixer. On the basis of kO3 and the initial ozone concentration ([O3]0), and the experimentally determined ratio of the concentrations of ?OH radicals to ozone (Rct), the degradation of micropollutants in ozone reactors (modeled as Continuously Stirred Tank Reactors - CSTRs) were calculated for compounds with known reaction rate constants with ozone and ?OH radicals. Calculated degradation of atrazine, iopromide, benzotriazole and acesulfame are in good agreement with measured data. For acesulfame the following rate constants were determined in this study at 20 oC: reaction rate constant with ozone = 88 M?1s?1, reaction rate constant with ?OH radical = 4.55?×?109 M?1s?1. For the ozone reaction an activation energy of 35 kJ/mol was determined. Similarly to micropollutants, the relative inactivation of microorganisms (N/N0) can be calculated based on the inactivation rate constant for ozone and if applicable the lag phase. The pI-value (=??logN/N0) was introduced and implemented in the process management system to calculate online the log inactivation of reference microorganisms such as B. subtilis spores. The system was tested for variation of pH (6.5–8.5), DOC (1.2–4.2 mg/L) flowrate 3.2–12 m3/h and temperature (5.7–9 oC). Furthermore, a given pI-value, e.g. 1 for a 1-log inactivation of B. subtilis spores, can be set as control parameter in the process management system. The ozone gas flow is then adjusted until the set pI-value is reached. The process control concept was validated with B. subtilis spores. Generally, a good agreement was found between calculated and measured inactivation data. It was also demonstrated, that a constant ozone residual may lead to insufficient disinfection or overdosing of ozone. The new process control concept for ozonations based on onsite measurement of the ozone decay rate constant and the pI-value allows to assess disinfection and degradation processes quantitatively in real-time.  相似文献   

14.
A study was performed for the GVRD to select the ozone dose that results in a higher UVT (UV Transmittance) and reduced DBP formation potential, at the most economical life cycle costs of ozone and UV treatment. The GVRD treats its Coquitlam source with ozone, to meet Giardia and virus inactivation requirements. Currently, the Coquitlam Facility does not meet Cryptosporidium inactivation requirements (3-log). Because the ozone dosage required for Cryptosporidium inactivation is cost prohibitive, UV treatment was selected to provide for adequate log inactivation. Based on pilot and full-scale test results, a model was developed to predict the ozone treated water UVT, which was applied to historical water quality data to evaluate life cycle costs of ozone and UV treatment. In addition, the dosage necessary for control of DBPs, the change in ozone decay rate with increases in pH, and the impact of three quenching chemicals on treated water UVT were evaluated.  相似文献   

15.
利用专用CFD软件Polyflow对SMX型和Kenics型静态混合器中PS/CO_2发泡溶液进行数值模拟计算,分析比较不同板厚在不同元件个数条件下两种静态混合器消耗的压力损失,以及不同CO_2浓度对静态混合器压力损失的影响;并引入"离散系数"分析比较两种静态混合器出口温度均匀性的变化.数值模拟的结果表明:SMX型静态混合器冷却效果优于Kenics型静态混合器,并且SMX型静态混合器出口温度均匀性高于Kenics型静态混合器.  相似文献   

16.
The rate of mass transfer from the gas to water phases was measured in a commercial, high-shear, laboratory mixer under conditions typical of medium-consistency bleaching. The gas—liquid volumetric mass transfer coefficient, kLa, was measured using the cobalt-catalyzed sulfite oxidation technique. Suspensions of fully-bleached kraft pulp and synthetic nylon fibres were used, with mass transfer rates measured over a range of suspension compositions and mixer operating conditions. In the presence of pulp fibre, mass transfer rates were significantly reduced over the comparable water cases. The same dramatic decrease in mass transfer was not observed for the nylon suspensions, although kLa did decrease with increasing suspension concentration. Comparison of this data with that obtained from ozone bleaching experiments confirmed that at medium-consistency gas—liquid mass transfer controls ozone bleaching.  相似文献   

17.
The enhancement of TOC, CODMn, and UV254 reduction in the conventional drinking water treatment process by pre-ozonation was investigated in South China on treating dam source water with a pilot plant consisting of pre-ozonation, coagulation-sedimentation, and filtration units. Pre-ozonation enhanced the reduction of NOM in the conventional coagulation-sedimentation and filtration process, and the total removals of UV254, CODMn and TOC were improved for 34.6%, 18.1% and 15.3%, respectively by the adoption of pre-ozonation under an ozone dose (in ozone consumption base) of 0.85 mg/L. The enhancement of UV254 and CODMn removals was mainly achieved through direct ozonation on humic substances, and that for TOC removal was achieved through biodegradation in sand filtration. In comparison with the TOC removal of 38%, a removal of 49% was acquired for SDS-THM under a pre-ozonation dose of 0.80 mg/L, indicating the selective removal of THMFP. The reduction of SDS-THM paralleled the reduction of CODMn to a significant degree, suggesting that the CODMn might be an effective surrogate parameter for SDS-THM if the raw water does not contain the reductive inorganic matters. Although the source water contains 13.2–27.0μg/L bromide, the formation of bromate was negligible when the ozone dose was below 1.0 mg/L.  相似文献   

18.
This paper reports a study using ozone (O3) and combined ozone/ultraviolet (O3/UV) processes for color removal and caffeine degradation from synthetic coffee wastewater using a second-order response surface methodology (RSM) with a three-level central composite face-centered (CCF) design. The effects of O3 concentration, initial pH, and reaction time were examined for both processes. The reaction time and pH were statistically significant for caffeine degradation and color removal. In the ozonation process, higher caffeine degradation and color removal were observed in alkaline pH, indicating that ozone attacks indirectly, consequently generating hydroxyl radicals. Regarding the ozone/UV process, it was observed that lower caffeine degradation and color removal occurred at neutral pH, indicating an adverse effect due to lower ozone dissolution and consequently the production of a smaller amount of free hydroxyl radicals. The achieved results showed that the techniques were efficient for color removal (85% and 99%, respectively) and caffeine degradation (88% and 98%, respectively).  相似文献   

19.
Mass transfer of ozone and oxygen to water was investigated both in pilot plant countercurrent bubble column and in a Rushton type laboratory stirred reactor supplied with a variable speed turbine agitator. A comparison was made for different hydrodynamic conditions with the main task of developing an engineering approach for determination of the physical volumetric mass transfer coefficient (KL oa), specific interfacial area (a), and physical masstransfer coefficient (KLO). The mass transfer characteristics of ozone and oxygen can be determined quickly in a pilot plant or laboratory apparatus, and employed to optimize the performance ofthe full scale water treatment plant.  相似文献   

20.
Results of our earlier laboratory study on ozone contacting systems in a continuous flow mode identified that the ozone disinfection process is limited by the mass transfer rate (7). The main controlling factor is the mass transfer efficiency rather than the contact time of the contactor in determining the effect of disinfection. By applying these concepts, we suggested a new ozone disinfection technique of using a static mixer as the contactor to substitute for a conventional bubble column designed with contact time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号