首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The destruction of methyl-tert-butyl ether (MTBE) in contaminated waters by O3/H202 process was studied and the influence background COD, alkalinity, and hydrogen peroxide and MTBE concentrations on process treatment efficiency and ozone dosage was investigated. The treatment efficiency was evaluated by an Efficiency Index, which is based on electrical energy requirement for ozone production. It was found that the treatment efficiency decreases linearly with increasing concentrations of MTBE at constant background COD and with background COD at constant MTBE concentration. A simplified kinetic scheme was presented to account for these observations.  相似文献   

2.
《分离科学与技术》2012,47(16):2453-2464
The objectives of this study were to investigate the effects of ozone and the O3/H2O2 process on FeCl3 coagulation efficiency for the removal of the high content of natural organic matter (NOM) and arsenic (As) from groundwater (DOC = 9.27 ± 0.92 mg/L; 51.7 ± 16.4 µg As/L). Arsenic and NOM removal mechanisms during coagulation/flocculation are well investigated. However, data concerning arsenic removal in the presence of NOM, which is the subject of this article, are still insufficient. Laboratory and pilot plant test results have shown that the competition of NOM and As for adsorption sites on the coagulant surface have great influence on coagulation/flocculation efficiency for their removal. With both oxidation pre-treatments, arsenic content after the coagulation process was less than 2.0 µg/L in treated water. Application of ozone has a lower influence on coagulation efficacy in terms of DOC reduction, compared to the O3/H2O2 process with the same ozone dose.  相似文献   

3.
The objective of the presented study was to test various oxidation processes with the aim being to reduce the concentration and toxicity of biocide wastewater from a Slovenian phytopharmaceutical factory. Laboratory-scale experiments employing two AOP processes – ozonation (O3) and peroxone (H2O2/O3) – were applied to reduce the concentration of the active components involved, i.e., methylisothiazolone (MI), chloromethylisothiazolone (CMI) and dichloromethylisothiazolone (DCMI). The reduction of the biocide wastewater load for the performed oxidation processes was evaluated using ecological parameters. The H2O2/O3 oxidation procedure using an O3 flow rate of 1g/L h, at a pH value of 10 and with the addition of 5 ml of H2O2 (0.3 M) proved to be the most effective treatment. The toxicity of the biocide-load wastewater with an initial EC50 = 0.38%, decreased to EC50 (24h) >100% and EC50 (48h) = 76%.  相似文献   

4.
This article explores the application of several ozone-based technologies on the abatement of a bio-refractory stream coming from an elderberry juice plant (BOD5/COD = 0.26). The impact of ozone inlet concentration and pH was addressed firstly, followed by the analysis of the O3+H2O2 combined system. Finally, the activity and stability of two solid catalysts (Mn-Ce-O and Fe-Mn-O) was assessed. None of the approaches produced values within the legal thresholds for direct discharge into water-courses. It is advisable to integrate the chemical treatment with a bio-reactor. Thus, single ozonation at pH = 3 (BOD5/COD = 0.48), O3+[H2O2] = 32.5 mM (BOD5/COD = 0.46) and O3+Mn-Ce-O at pH = 3 (BOD5/COD = 0.44) are promising strategies.  相似文献   

5.
This work aims to analyze the contribution of H2O2 on ozonation of Sulfamethoxazole (SMX). A single ozonation was able to totally remove SMX. TOC and COD depletion rates after a transferred ozone dose of 60 mg/L was related to the formation and decomposition of H2O2. An increase on O3 gas inlet concentration from 10 g/m3 to 20 g/m3 improved COD abatement from 11% to 36%. When the presence of H2O2 at the beginning of ozonation was tested, it was verified that COD and TOC degradation were enhanced, attaining maximum values of 76% and 32%, respectively, when compared with 35% and 15% reached in a single ozonation.  相似文献   

6.
《Desalination》2007,202(1-3):310-317
In this paper, the technical applicability of the vibratory shear-enhanced processing reverse osmosis (VSEPRO) membrane system for the treatment of stabilized leachate from the NENT landfill in Hong Kong was studied using both 99 and 96% NaCl rejection membranes. The performance of VSEPRO for NH3-N and COD removal was evaluated and compared to the performances of other individual and/or combined treatments from other studies. Without any pH adjustment, it was found that the rejection rates of VSEPRO were 96% for COD and 98% for NH3-N with initial COD and/or NH3-N concentrations of 8000 and 2620 mg/L, respectively. It was evident that pH adjustment of raw leachate to acidic conditions (pH 6.0) slightly improved the rejection rates for COD (97%) and NH3-N (99.6%). These results were satisfactory compared to other physicochemical treatments. It is important to note that the treatment of leachate using VSEPRO was able to meet the local effluent limit for COD of lower than 200 mg/L and for NH3-N of less than 5 mg/L. This result suggests that VSEPRO is technically applicable and appealing for the treatment of stabilized leachate.  相似文献   

7.
A detailed investigation on photooxidation of linear alkyl benzene (LAB) industrial wastewater is presented in this study. The process analysis was performed by varying four significant independent variables including two numerical factors (initial pH (3–11) and initial H2O2 concentration (0–20 mM)) and two categorical factors (UV irradiation and ozonation). The experiments were conducted based on a central composite design (CCD) and analyzed using response surface methodology (RSM). To assess the process performance, two parameters viz. TCOD removal efficiency and BOD5/COD were measured throughout the experiments. A maximum reduction in TCOD was 58, 53, 51, and 49%, respectively for UV/H2O2/O3, H2O2/O3, UV/O3 and UV/H2O2 processes at the optimum conditions (initial pH of 7, initial H2O2 concentration of 100 mM, and reaction time of 180 min). A considerable increase in BOD5/COD ratio was obtained in the combined processes (0.46, 0.51, 0.53, and 0.55 for UV/H2O2, UV/O3, H2O2/O3 and UV/H2O2/O3, respectively) compared to the single oxidant process (0.35). The results showed that mineralization of the LAB industrial wastewater in neutral pH is more favored than in acidic and basic pH. Gas chromatography–mass spectrometry (GC–MS) was applied to show the fate of organic compounds. In conclusion, the photooxidation process (UV/H2O2/O3, H2O2/O3, UV/O3 and UV/H2O2) could be an appropriate pretreatment method prior to a biological treatment process.  相似文献   

8.
The purpose of this research is to evaluate the bactericidal capacity of different Advanced Oxidation Treatments (AOTs) based on ozone: ozone, ozone/hydrogen peroxide and ozone/titanium dioxide on a wild strain of Clostridium perfringens, a fecal bacterial indicator in drinking water. The dose of ozone consumed ranges from 0.6 mg L?1 min?1 to 5.13 mg L?1 min?1 depending on the process and on the sample. In the treatments combined with O3, H2O2 dose utilized is 0.04 mM and TiO2 dose, 1 g L?1. In order to evaluate the influence of natural organic matter and suspension solids over the disinfection rate, treatments are performed with two types of water – natural water from Ebro River (Zaragoza, Spain) and NaCl solution 0.9%. To achieve 4 log units of inactivation, 3.6 mg O3 L?1 is necessary in O3 treatment, 4.25 mg O3 L?1 in O3/TiO2 system and 2.7 mg O3 L?1 in O3/H2O2 after processing the natural water. In NaCl solution, to get the same inactivation, 0.42 mg O3 L?1 is necessary in O3 treatment, 1.15 mg O3 L?1 in O3/TiO2 system and 0.06 mg O3 L?1 in O3/H2O2 process. Even though the three treatments studied have a high bactericidal activity due to the number of surviving bacteria decreases to non-detectable levels, O3/H2O2 is the most effective system for eliminating C. perfringens cells in a lower contact time, followed by O3 and finally O3/TiO2 system.  相似文献   

9.
This research deals with the decolorization of synthetic wastewater, prepared with the acid 1:2 metal-complex textile dye C.I. Acid Blue 193, using the ozonation (O3) and H2O2/O3 processes. To minimize the number of experiments, they were performed using the 2k factorial design. Five influential parameters were examined: initial dye concentration, ozone flow rate, initial pH value, decolorization time and H2O2 addition. The decolorization efficiency was 95% in 20 minutes (pH = 7; O3 flow rate of 2 g/L.h) and a higher increase in the toxicity after the ozonation process (39%) indicates the formation of carcinogenic by-products. According to the variance test analysis, the initial dye concentration, the ozone flow rate, the initial pH value and the decolorization time and their first- and second-order interactions are significant, while the H2O2 addition was not important with respect to the discussed range. With the help of these significant factors a regression model was constructed and the adequacy of the model was checked. The obtained regression polynomial was used to model the relation between the absorbance and the influential parameters by fitting the response surface. This response surface may be used to predict the absorbance result from a set of influential parameters, or it can be rearranged in such a way as to predict the set of process decolorization parameters necessary to reduce the absorbance of wastewater with the given initial dye concentration, below the prescribed limit. It is also shown that the 2k factorial design can be suitable for predicting the operating expenses of the ozonation.  相似文献   

10.
Disinfection of anaerobically treated effluent (UASB) was carried out to eliminate the enteric pathogens by using UV irradiation, peracetic acid, H2O2, O3 and advanced oxidation processes (O3/H2O2, O3/UV and H2O2/UV). Re-growth potential of these pathogens was monitored in terms of time and temperature. Inactivation of pathogens by ozone at the rate of 300 mg/h for 20 minutes approached 99%. UV irradiation resulted in 99% pathogen removal at irradiation time of 120 seconds. A dose of 170 mg/L H2O2 eliminated more than 99% pathogens. Samples disinfected with UV, H2O2 and O3 showed gradual re-growth with an increase in time and temperature (from 20 to 35°C). However, disinfection with AOPs proved to be the most effective tool resulting in reduction of treatment time taken by individual processes, also the disinfected samples showed minimal re-growth revealing the superiority of their combined effects.  相似文献   

11.
For improving the treatment of landfill leachate by combination O3/H2O2, ceramic Raschig rings (CRR) with different surface areas were added to enhance mass transfer of ozone into liquid phase. To determine optimal conditions of reaction, pH and reaction time was also studied. The optimal pH range of 8–9, optimal reaction time of 80 min was identified in this research. CRR contribute to the significant improvement of efficiency of landfill leachate treatment by O3/H2O2 systems. With added CRR of 728 m2/m3 surface area, color, COD and TOC removal was increased in comparison with experiment without CRR is 8%, 14%, and 9%, respectively. In this condition, the ozone utilization efficiency was also higher than that of experiment without CRR. Content of O3 was also identified uses 3.441 kg O3/kg COD.  相似文献   

12.
The post-treatment of composting leachate via an ozonation process in laboratory scale was studied in batch mode. According to the experiments, the COD removal was 47% after 30 min of ozonation via 0.4 g/h ozone (equivalent to 2.8 mg O3/mg COD removed) at pH 9. In this circumstance, the removal of color and turbidity was also 86% and 89%, respectively. Increasing the ozone mass flow rate higher than 0.4 g/h had no considerable effect on the process variables. However, increasing the reaction time had a significant effect on both the removal of color and on COD of the leachate. Experimental data indicated that complete removal of color and 51% removal of COD were achieved after about 40 min of ozonation via 0.4 g/h ozone (equivalent to 3.3 mg O3/mg COD removed). The ozone consumption rate increased as the reaction progressed and reached 4.1 mg O3/mg COD removed after 60 min.  相似文献   

13.
Effluent from the Pa?aköy Wastewater Treatment Plant was oxidized by using O3 and O3/H2O2. DOC, COD, UV254, total coliform, dissolved ozone and some endocrine disrupting compounds were monitored during oxidation. Results showed that O3 provided superior disinfection, however, lower reductions in DOC, COD and endocrine disrupting compounds were exhibited compared to O3/H2O2. The highest removal efficiency of DOC, COD and endocrine disrupting compounds were achieved at 0.5 molar ratio of O3/H2O2. The benefit of H2O2 addition for advanced oxidation reduced significantly when the mole ratio was increased to 2. Therefore, the mole ratio of H2O2 to O3 is a critical parameter for the design of wastewater oxidation by O3/H2O2.  相似文献   

14.
This study analyzes the performances of 2 methods of oxidation based on ozone, namely ozonation and ozone combined with hydrogen peroxide (O3/H2O2), on two biotreated municipal wastewater effluents. The main parameters monitored to evaluate the effectiveness of the processes were Chemical Oxygen Demand (COD), Dissolved Organic Carbon (DOC) and Biochemical Oxygen Demand (BOD5). Ozonation and O3/H2O2 treatment removed 44% and 48%, respectively, of the COD, after 90 min, of the secondary effluent of Calafell wastewater treatment plant (Spain). On the secondary effluent from the Grasse wastewater treatment plant (France), these same treatments (O3; O3/H2O2) achieved, respectively, a degradation of 52% and 100% of the COD after 60 min. The transferred ozone dose (TOD) during Calafell and Grasse effluents' ozonation were 122 mg·L?1 and 77 mg·L?1 after 90 min, respectively. A low removal of DOC was monitored during both O3 or O3/H2O2 treatments applied to Calafell wastewater, respectively 12% and 14%. Better DOC reductions were obtained on the water of Grasse treated with O3 or O3/H2O2, respectively, 48% and 60%. In addition, ammonia nitrogen was oxidized to nitrate nitrogen thus giving rise to an over ozone consumption. And finally, both processes proceeded with an increase of pH values. These results highlight the strong dependency of O3 or O3/H2O2 treatment effectiveness in terms of dissolved organic matter (DOM) removal and ozone consumption on wastewater composition (organic and inorganic substances).  相似文献   

15.
Ozonation of a natural tannin (NT; CODo?=?1195 mg/L; TOCo?=?342 mg/L; BOD5,o?=?86 mg/L) and a synthetic tannin ST; CODo?=?465 mg/L; TOCo?=?55 mg/L; BOD5,o?=?6 mg/L) being frequently applied in the polyamide dyeing process was investigated. Synthetic wastewater samples containing these tannins individually were prepared and subjected to ozonation at varying ozone doses (625– 1250 mgO3/L wastewater), at pH?=?3.5 (the application pH of tannins) and pH?=?7.0 at an ozone dose of 1125 mgO3/L wastewater. The collective environmental parameters COD, TOC, BOD5, UV254 and UV280 (UV absorbance at 254 nm and 280 nm, representing aromatic and unsaturated moieties, respectively) were followed during ozonation. Changes in the biodegradability of the tannins were evaluated in terms of BOD5 measurements conducted before and after ozonation. In addition, activated sludge inhibition tests employing heterotrophic biomass were run to elucidate the inhibitory effect of raw and ozonated textile tannins towards activated sludge biomass. Partial oxidation (45% COD removal at an ozone dose of 750 mg O3/L wastewater and pH?=?3.5) of ST was sufficient to achieve elimination of its inhibitory effect towards heterotrophic biomass and acceptable biodegradability improvement, whereas the inhibitory effect and biodegradability of NT could not be reduced via ozonation under the same reaction conditions.  相似文献   

16.
Treatment of landfill leachate could be improved by adding ceramic raschig rings and manganese ore as catalysts for ozonation. Regression analysis were carried out to assess effects of parameters (pH, reaction time, the amount of H2O2, the surface area of ceramic raschig rings and the amount of manganese ore) on removing organic compounds from landfill leachate by ozone alone, peroxone, ozone/ceramic raschig rings, peroxone/ceramic raschig rings, ozone/manganese ore and peroxone/manganese ore. Results showed that parameters of reaction time, the amount of H2O2 and the amount of manganese ore were the high effects on removal of organic compounds from landfill leachate, following by pH paremeter. Ceramic raschig rings did not have significant effect on color, COD and TOC removal.  相似文献   

17.
This laboratory study was designed to investigate the degradation of 4-chloronitrobenzene ([CNB] = 2.4 × 10?6 mol L?1; pH = 7.5) by H2O2/UV and by O3/UV oxidation processes which involve the generation of very reactive and oxidizing hydroxyl free radicals. The effects of the oxidant doses (H2O2 or aqueous O3), liquid flow rate (or the contact time), and bicarbonate ions acting as OH· radical scavengers on the CNB removal rates were studied. For a constant oxidant dose, the results show that the O3/UV system appears to be more efficient than the H2O2/UV system to remove CNB because of the greatest rate of OH· generation by ozone photodecomposition compared to H2O2 photolysis. However, for a given amount of oxidant decomposed, the H2O2/UV oxidant system was found to be more efficient than O3/UV. Moreover, high levels of bicarbonate ions in solution (4 × 10?3 mol L?1) significantly decrease the efficiency of CNB removal by H2O2/UV and by O3/UV oxidation processes.  相似文献   

18.
《分离科学与技术》2012,47(15):2348-2359
The sequencing batch reactor (SBR) process was used for the treatment of raw landfill leachate. Optimum preliminary parameters of leachate/activated sludge ratio, powdered activated carbon (PAC) dosage, and settling time were studied. Optimum obtained parameters (mixing ratio of 10%, PAC dosage of 10 g/L, and settling time of 1.5 h) were applied on two types of SBRs, namely, non-powdered and powdered activated carbon (NPAC and PAC, respectively). Consequently, the effect of factors, the aeration rate and contact time, on both NPAC and PAC reactors were studied. Response surface methodology was used for the design, analysis, and optimization of the experiments. Removal efficiencies of ammonia (NH3-N), color, chemical oxygen demand (COD), total dissolved salts (TDS), and sludge volume index (SVI) were measured for 13 experiments. Based on the obtained results, the optimum aeration rate and contact time for both NPAC and PAC reactors were 2 and 1 L/min and 5.56 and 5.5 h, respectively. Better performance (in terms of NH3-N, color, COD, and TDS removal efficiencies and SVI values) was exhibited by PAC reactors rather than NPAC.  相似文献   

19.
This study was aimed to evaluate the use of ozone (O3) alone and peroxone (a combination of ozone and hydrogen peroxide; O3/H2O2) as post-treatment processes for color removal in swine wastewater from a membrane filtration system. Results showed that the application of ozone-alone process or the peroxone process could reduce both capital and operating costs compared to reverse osmosis (RO) treatment. Of the two oxidation processes, the ozone-alone process was the most effective for treating nanofiltration (NF)-filtered wastewater, while the peroxone process was the most effective for treating ultrafiltration (UF)-filtered wastewater.  相似文献   

20.
The characteristics and influencing factors for dinitrotoluene degradation by nano-Fe3O4-H2O2 were studied, and the nano-scale Fe3O4 catalyst was prepared by the coprecipitation method, with dinitrotoluene wastewater as the degradation object. The results showed that the catalytic reaction system within the pH value range of 1 to 9 could effectively degrade dinitrotoluene, and the optimal pH value was 3; with the increase of catalyst dosage, the degradation efficiency and the catalytic reaction rate of dinitrotoluene grew as well. The optimal catalyst dosage was 1.0 g/L when the H2O2 dosage was within the range of 0 to 0.8 mL/L; the degradation efficiency and reaction rate grew with the increase of H2O2 dosage. With further increase of H2O2 dosage, degradation efficiency and reaction rate decreased; under the best conditions with the H2O2 dosage of 0.8 mL/L, the catalyst concentration of 1 g/L and the pH value of 3 at room temperature (25 °C), the degradation rate of the 100-mg/L dinitrotoluene in 120 min reached 97.6%. Through the use of the probe compounds n-butyl alcohol and benzoquinone, it was proved that the oxidation activity species in the nano-Fe3O4-H2O2 catalytic system were mainly hydroxyl radical (?OH) and superoxide radicals (HO2 ?), based on which, the reaction mechanism was hypothesized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号