首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
基于现有试验数据以及组合节点抗弯承载力的研究成果,利用塑性分析方法和组件法,提出一种平端板连接组合节点承受负弯矩作用时,其塑性抗弯承载力的计算方法。探讨组合节点的实效模式,给出其各组件承载力的计算方法,组件包括钢筋、螺栓、柱腹板、梁翼缘、混凝土楼板等。考虑中和轴出现的6种位置:混凝土楼板内;钢梁上翼缘内;钢梁腹板内,所有螺栓受压;前m-1排螺栓受拉,第m排部分受拉,其余受压;1~m排完全受拉;只有钢梁下翼缘受压。该方法可以考虑节点承受非对称荷载作用的情况以及作用在连接上的剪力、高强度螺栓撬力等因素的影响。如果将组合连接的配筋率取为零,不考虑组合楼板的影响,使用该方法同样可以计算平端板连接梁柱纯钢节点在承受负弯矩作用时的抗弯承载力。  相似文献   

2.
为了获悉负弯矩作用下钢管混凝土组合框架端板连接节点的抗弯承载力,给出组合节点的失效模式,建立对称荷载和非对称荷载作用下组合节点的力学模型,详细考虑柱截面类型、端板类型、荷载类型、楼板组合作用的影响。基于节点失效模式,分别提出钢筋抗拉承载力、螺栓抗拉承载力、连接抗压承载力等组件承载力的简化计算方法。根据力学平衡原理和力学模型,利用组件法,确定组合节点受弯中和轴位置,分别提出平齐端板连接和外伸端板连接钢管混凝土组合节点在负弯矩作用下的承载力计算公式。用试验结果验证了所提组合节点抗弯承载力简化计算方法的正确性,研究成果可为建立半刚性钢管混凝土组合框架设计理论提供科学依据。  相似文献   

3.
针对工字形纯钢梁和钢-混凝土组合梁分别与矩形钢管柱和矩形钢管混凝土柱采用单向螺栓(也称单边拧紧螺栓)连接形成的4种节点形式,对其在弯矩作用下的受力机理及破坏模式进行分析,讨论导致节点失效的因素。总结节点在弯矩作用下的9种失效模式,包括:单向螺栓拉断、端板受弯屈服、矩形钢管柱壁翼板受拉屈服、矩形钢管柱壁翼板受压屈服、矩形钢管柱壁腹板受压屈曲、混凝土楼板局部压溃、钢筋屈服、矩形钢管柱内混凝土局部压溃、矩形钢管柱壁腹板受压屈服,进而基于破坏模式给出节点各组件承载力的计算公式。对4种节点在不同破坏模式下的正弯矩承载力和负弯矩承载力进行分析,给出节点承载力计算公式。将节点抗弯承载力的理论计算结果与试验结果进行对比,验证理论计算方法的可靠性。  相似文献   

4.
黄永强  朱晶 《建筑结构》2021,51(7):66-72
翼缘焊接腹板栓接的梁柱栓焊混合刚性节点是钢框架梁柱现场连接的主要形式之一,该节点需满足"强节点"的设计原则.传统的栓焊混合节点计算仅考虑翼缘抗弯和腹板抗剪,《高层民用建筑钢结构设计规范》(JGJ 99-2015)借鉴日本规范,给出了钢梁腹板承担梁端弯矩的计算方法.基于常用的热轧型钢截面,对比了考虑翼缘与腹板均参与抗弯的栓焊节点新算法与仅考虑翼缘抗弯的传统算法之间的差别.结果表明:腹板对梁柱节点的极限抗弯承载力提高有限,腹板抗弯承载力占梁柱连接的极限抗弯承载力的比值为8%~14%;对常用HN型钢,即便考虑腹板抗弯,仍然无法满足《高层民用建筑钢结构技术规程》(JGJ 99-2015)公式(8.2.1-1)Mju≥αMp,还需要采用加强型连接或狗骨式节点.由于腹板螺栓的抗弯中心距明显小于翼缘的抗弯中心距,用腹板螺栓抗弯不太经济.腹板配置受弯螺栓数量远超抗剪所需螺栓,并造成连接板尺寸过大,相比单纯加强翼缘反而更浪费材料.梁柱节点需进行小震弹性和极限承载力的两阶段设计,实际工程案例表明,跨高比较大的钢梁腹板螺栓一般由弹性设计控制,跨高比较小时由极限承载力控制.  相似文献   

5.
进行了考虑压型钢板-混凝土组合楼板组合作用的方钢管混凝土柱-H形钢梁螺栓连接节点的静力性能试验研究。分别对无楼板、楼板受压、楼板受拉的3个足尺节点试件进行了静力加载试验,通过对比分析,考察了节点在单调荷载作用下的受力性能,包括初始转动刚度、极限承载能力等,研究了正、负弯矩作用下楼板组合作用对其受力性能的影响。研究结果表明:无板节点试件梁端位移延性系数达到2.2以上,满足抗震设计要求;组合节点和无板节点受力性能差别明显,相比于纯钢梁,组合梁横截面中和轴上移,组合节点的初始转动刚度、承载力与无楼板节点相比均有大幅度提高;组合节点螺栓开始滑移的荷载增大,最大滑移量减小;节点核心区剪切变形可忽略不计。  相似文献   

6.
延伸式端板连接节点是钢管混凝土结构中常见的梁柱节点形式,基于组件法建立了钢管混凝土柱-钢梁延伸式端板连接节点初始转动刚度的计算模型,考虑了端板受弯、端板受剪、螺栓受拉、钢管柱腹板受剪、柱核心混凝土受剪变形对节点转动刚度的影响,对于节点锚固件,采用贯通螺栓或单边螺栓.通过确定对节点初始转动刚度有贡献的组件将其简化为弹簧模...  相似文献   

7.
本文对两个主次梁螺栓连接节点试件进行了抗弯试验,考虑了连接螺栓直径对连接节点性能的影响,分析了连接节点的破坏特点、抗弯承载力和刚度。研究表明,连接节点进入屈服时的弯矩试验值明显小于钢梁边缘屈服的弯矩理论计算值,连接节点的最终破坏模式为主梁加劲板螺栓孔受剪破坏,且减小螺栓直径的规格及相应螺栓孔直径,节点的弹性抗弯刚度提高。根据EC3规范,连接节点的抗弯刚度达不到刚接,在计算中只能视为铰接节点,研究成果将为主次梁螺栓连接节点的设计及施工提供依据。  相似文献   

8.
在大跨或重载钢结构中,当梁柱之间需要采用螺栓连接时,如果普通构造的端板连接节点和大承载力端板连接节点不能满足承载力要求,则需要采用受拉区布置12颗或16颗螺栓的超大承载力端板连接节点。为研究该类型节点受力性能,进行4个超大承载力端板连接节点足尺试件的单调加载试验,得到各节点试件的弯矩-转角曲线,分析不同螺栓直径、端板厚度和螺栓布置形式下各节点的抗弯承载力、转动刚度和受拉区螺栓拉应变增量分布的特点。结果表明,在试验试件构造条件下超大承载力端板连接节点的弯曲失效模式为端板屈服后螺栓失效,端板厚度对节点承载力影响明显;各螺栓的拉应变增量分布不均匀,角部螺栓对节点抗弯承载力影响较小,建议在设计中移除或仅按抗剪螺栓考虑;建议节点域屈服承载力仍按照现行规范计算,该类节点的等效受拉螺栓数量取为7。  相似文献   

9.
《钢结构》2015,(1)
T形节点常用于描述螺栓抗弯连接节点的受拉区。目前,一般认为螺栓仅承受拉力。主要研究T形节点处螺栓抗弯性能的影响。首先,建立三维有限元模型,并将分析结果与已有文献中的试验结果进行对比验证。然后,使用该数值模型分析不同轴向拉力和螺栓弯矩下各类T形节点的性能。结果表明,螺栓弯矩对有些T形节点的失效模式产生了影响。给出用于计算弯矩和轴向拉力作用下单个螺栓承载力的交互作用公式,并采用有限元模型评估该公式的精确性。最后,为评估作为T形节点构件的螺栓的弯矩和轴向拉力,给出了分析模型。与数值分析结果的比较表明,该模型能够较好地给出考虑螺栓弯矩的T形节点的性能。  相似文献   

10.
平端板连接半刚性梁柱组合节点的转动能力   总被引:1,自引:0,他引:1  
本文在现有研究成果基础之上,针对连接分别承受正、负弯矩作用的情况,给出了平端板连接梁柱组合节点转动能力的计算方法,考虑了钢筋的伸长变形、螺栓的伸长变形、栓钉的滑移变形、混凝土楼板的压缩变形等因素。利用本文给出的方法计算得到的连接转角,是组合节点转动能力的下限值。  相似文献   

11.
黄兴  叶志明  石文龙 《建筑结构》2015,(5):75-79 96
为了研究混凝土翼板外伸锚固对梁柱端板连接半刚性组合边节点抗弯承载力的影响,运用组件法和弹塑性理论提出了正负弯矩作用下混凝土翼板外伸锚固对梁柱端板连接半刚性组合边节点抗弯承载力影响的计算公式。通过与试验结果对比表明,计算值与试验值吻合较好,该计算公式可用于梁柱端板连接半刚性组合边节点刚性的判断和参数研究。  相似文献   

12.
黄兴  叶志明  石文龙 《建筑结构》2015,(5):75-79,96
为了研究混凝土翼板外伸锚固对梁柱端板连接半刚性组合边节点抗弯承载力的影响,运用组件法和弹塑性理论提出了正负弯矩作用下混凝土翼板外伸锚固对梁柱端板连接半刚性组合边节点抗弯承载力影响的计算公式。通过与试验结果对比表明,计算值与试验值吻合较好,该计算公式可用于梁柱端板连接半刚性组合边节点刚性的判断和参数研究。  相似文献   

13.
钢梁与混凝土柱单剪板连接节点形式简单、施工方便。在单剪板节点结构设计中,通常把该类节点简化成铰接节点,认为其只传递剪力和轴力,忽略梁端弯矩的作用,从而高估了预埋件的承载能力,给结构留下了安全隐患。为了研究单剪板连接节点的受力性能,对3个不同螺栓布置的钢梁-钢筋混凝土柱单剪板连接节点进行了静力加载试验,研究了螺栓数量、螺栓直径等因素对试件破坏模式、荷载-挠度曲线和约束弯矩的影响。结果表明:钢梁-钢筋混凝土柱单剪板连接节点的约束弯矩随螺栓群惯性矩的增大而增大;试件的承载力和刚度受高强螺栓布置数量的影响较大,受螺栓直径的影响较小。在试验研究的基础上,建立了单剪板连接节点的受力简化模型,根据模型给出了约束弯矩计算方法和弹性阶段节点折算偏心距计算公式,其计算结果与试验结果吻合较好。  相似文献   

14.
为研究楼板的组合作用对复式钢管混凝土柱-钢梁节点抗震性能的影响,进行了4个考虑楼板组合作用的节点和1个不考虑楼板组合作用的钢梁节点的低周往复荷载试验,分析了不同构造和混凝土楼板对节点破坏形态、滞回曲线、承载能力、刚度退化、延性和耗能能力等的影响。结果表明:该类节点构造合理,满足"强节点弱构件"的抗震设计原则;不考虑楼板组合作用的节点试件的破坏形态为梁端破坏,考虑楼板组合作用的节点试件的破坏形态为梁端破坏和柱端破坏;楼板与钢梁的组合作用使节点承载力提高显著,但延性提高不明显,破坏时钢梁下翼缘的变形和焊缝撕裂程度增大;锚固腹板设置加劲肋有效延缓了钢梁下翼缘破坏,提高了组合节点的耗能能力;该组合节点试件滞回曲线较饱满,刚度退化明显,承载力退化不明显,等效黏滞阻尼系数介于0.282~0.311之间,转角延性系数和层间位移角均满足规范要求,具有较好的抗震性能。  相似文献   

15.
超大承载力端板连接节点能够提供比普通构造的端板连接节点和大承载力端板连接节点更大的抗弯承载力,可以应用于大跨或重载钢结构中。由于超大承载力端板连接节点的螺栓拉力分布不均匀、端板受力状态复杂,现有的端板连接节点设计方法不能直接应用。此文建立超大承载力端板连接节点的有限元模型,通过已有试验验证模型的可靠性|利用有限元模型分析单调荷载下超大承载力端板连接节点的受力性能,提出弯矩作用下受拉区端板的屈服线模型和受拉区螺栓承担拉力的分布模型。在所提模型的基础上基于我国规范提出超大承载力端板连接节点的抗弯承载力设计方法。比较所提设计方法得到的节点抗弯承载力设计值与有限元得到的屈服承载力,在我国规范规定的高强度螺栓受拉极限状态条件下所提方法得到的设计结果偏于安全。  相似文献   

16.
为了研究部分外包混凝土组合梁在正弯矩作用下的受力性能,考察钢梁腹部钢筋混凝土对组合梁承载力及刚度的影响,对4根简支梁试件进行了试验研究,其中包括1根普通钢-混凝土组合梁试件和3根钢梁腹板与腹部混凝土界面采用不同连接方式的部分外包组合梁试件。试验结果表明:钢梁腹板与腹部混凝土界面采用不同连接方式对部分外包组合梁的受弯承载力和刚度没有显著的影响;与普通钢-混凝土组合梁相比,由于钢梁腹部钢筋混凝土的贡献,部分外包组合梁的受弯承载力和抵抗变形的能力均有较大的提高;承载力极限状态时部分外包组合梁中钢梁与腹部混凝土之间的相对滑移值较小,其滑移效应对组合梁截面受弯承载力的影响可以忽略不计。在试验研究的基础上,推导了部分外包组合梁塑性受弯承载力的计算公式,计算结果表明,简化塑性理论可以较准确地预测该类组合梁的受弯承载力。  相似文献   

17.
《Planning》2019,(6):824-833
楼板的存在对梁柱节点的局部受力影响显著,在梁柱节点设计中,若仅仅把楼板与钢梁的组合效应作为安全储备,可能会产生结构由"强柱弱梁"转变成"强梁弱柱"的颠覆性结果,因此忽略混凝土楼板对节点承载力及刚度的影响是造成破坏的重要原因.基于已完成的带楼板的T型梁柱节点低周往复荷载试验,建立了非线性有限元分析模型.为了更加全面地了解钢梁-楼板组合节点的工作机制,进一步补充完善试验研究的不足,模型考虑了楼板与钢梁之间的栓钉连接以及材料非线性等因素,模型的计算结果与试验结果具有高吻合度.在此基础上,通过有限元参数分析,详细分析了构件尺寸效应、轴压比、楼板厚度、楼板强度和柱宽厚比共五个参数对考虑楼板影响的外环板式梁柱节点抗震性能的影响.结果表明尺寸效应、轴压比对梁端抗弯承载力及刚度的影响小到可以忽略,楼板厚度、楼板强度和柱宽厚比对梁端抗弯承载力有显著影响.结合理论分析进一步提出了考虑楼板影响的外环板式梁柱节点梁端抗弯承载力计算公式,通过对比公式计算结果与试验、有限元分析结果可得,该计算公式可较好的计算带楼板外环板式梁柱节点梁端抗弯承载力.  相似文献   

18.
楼板在地震作用下对钢筋混凝土柱-钢梁组合体抗震性能的影响是建立地震作用下节点计算模型的基础,也是准确评价组合结构体系抗震性能的关键问题之一。为此,完成了3个钢筋混凝土柱-钢梁(RCS)空间组合体试件在考虑不同楼板宽度情况下的抗震性能试验,分析整个受力过程中楼板受力性态对组合构件受力特征、破坏模式等抗震性能的影响。各试验模型在加载过程中均产生梁铰破坏,并表现出较好的延性和耗能能力,最终因节点区钢梁屈曲、扁钢箍开裂和柱端混凝土压碎而丧失承载力。分析表明,楼板裂缝以横向裂缝为主,随着楼板宽度增加,次生斜裂缝增多,板底混凝土压碎区域增大;混凝土楼板与钢梁组合体对节点核心区的约束作用较明显地改善了空间组合体受力性能。对楼板混凝土和板内纵筋在受力过程中的应变进行分析,结果表明,随着楼板宽度的增加,楼板对RCS空间组合体刚度、承载力的贡献值有限。对现浇板受拉有效翼缘宽度进行分析,结果表明考虑钢-混凝土组合梁翼缘有效宽度对梁端受弯承载力、惯性矩影响较大。  相似文献   

19.
组合梁抗弯承载力和稳定性分析对组合梁的结构设计很关键,但组合钢梁上翼缘受混凝土楼板约束,其稳定性分析应与我国现行规范规定的自由梁弯扭失稳不同,我国《钢结构设计规范》GB50017—2003采用限制绕弱轴的长细比的方法,未能考虑楼板作用,不适用于组合钢梁稳定性分析。此外,在连续组合梁的负弯矩区,局部稳定性问题也要考虑。结合深圳北站站房楼盖组合梁的工程实例,采用GB50017—2003和欧洲规范EC4,对组合梁抗弯承载力和稳定性进行计算分析,同时,利用通用有限元程序SAP2000对组合钢梁进行弹性屈曲分析,进一步确保了结构的安全。  相似文献   

20.
《钢结构》2020,(4)
T形钢管混凝土柱由翼缘宽矩形钢管和腹板矩形钢管内填混凝土构成,其中翼缘宽钢管又分成腹板左侧、与腹板相对和腹板肢右侧等三个腔,各腔壁板的宽厚比满足矩形钢管混凝土柱中对宽厚比的限值,因而钢板不发生局部屈曲。按照弹性材料假定确定组合截面的弹性形心主轴;采用截面变形符合平截面假定,钢材为理想弹塑性,并假设混凝土在钢管的约束下混凝土在到达强度标准值后不退化,略去混凝土拉应力,采用计算程序确定了T形钢管混凝土柱(T-CFT)在双向弯矩和轴力作用下形成塑性铰时的极限曲面。计算截面在塑性中和轴平行于翼缘时的轴力-弯矩相关曲线,论证了轴力-弯矩相关曲线的旋转对称性;分析了曲线的特点,根据弹性形心轴和塑性中性轴的相对位置,识别出4个关键点,分别是全截面受压、全截面受拉、塑性中性轴与弹性形心轴重合和塑性中性轴位于翼缘钢管的下表面,计算这4个关键点的轴力和弯矩;计算并且理论分析也表明,当塑性中性轴与弹性形心轴重合时,抗弯承载力达到最大值。根据不同截面宽高比、不同钢材与混凝土强度等级的组合下相关曲线的不同特点,将相关曲线分为两类,分别拟合了轴力和弯矩的相关关系。对于塑性中性轴平行于腹板的情况,存在绕两个形心轴的弯矩,分别画出了轴力与绕两个坐标轴的弯矩的两组相关曲线,这些相关曲线上同样可以识别出5个关键点,分别对应于全截面受拉、全截面受压、塑性中性轴在腹板肢左侧和腹板肢右侧、塑性中性轴与弹性形心轴重合,利用这5个关键点的轴力和弯矩值,拟合了轴力与弯矩相关曲线的两组近似计算公式。对最大抗弯承载力进行了参数分析,结果表明,影响最大抗弯承载力的最大因素是混凝土的分担率,为此拟合了最大抗弯承载力与混凝土分担率的关系曲线。最后,分析了T形钢管混凝土截面在双向弯矩和轴力作用下的相关曲线,考察了给定轴力下绕两个坐标轴的弯矩之间的相关关系曲线,发现相关曲线的左、右、上、下4个极值点的弯矩值对应的塑性中性轴分别平行于坐标轴,基于此特性,利用已经提出的塑性轴平行于坐标轴时的轴力-弯矩相关关系的计算式,可以计算出这4点的弯矩值;根据不同轴力下双向弯矩相关曲线,拟合了双向弯矩相关关系式。通过与大量算例结果的对比,发现该公式精度良好且偏于安全。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号