首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A record efficiency of 16.4% (156.25 cm2) has been achieved for an n-type wafer-based (hereafter, “n-based”) mc-Si solar cell. A horizontal quartz tube furnace with an industry-compatible scale is employed for forming a p+-emitter using boron tribromide (BBr3) as the boron source, in which system less contamination is confirmed than in other options of boron diffusion. A significantly homogeneous emitter is achieved with the standard deviation of 1.5 Ω/sq. n-Based mc-Si solar cells are fabricated with phosphorus-diffused BSF, SiN deposition, and fire-through screen-printed contacts. The properties of the best cell are; η: 16.4%, Voc: 607 mV, Jsc: 35.2 mA/cm2, and FF: 76.7%.  相似文献   

2.
Double porous silicon (d-PS) layers formed by acid chemical etching on a top surface of n+/p multi-crystalline silicon solar cells were investigated with the aim to improve the performance of standard screen-printed silicon solar cells. First a macro-porous layer is formed on mc-Si. The role of this layer is texturization of surface. Next, the cells have been manufactured using standard technology based on screen-printing metallization. Finally, a second mezo-porous layer in n+ emitter of cell has been produced. The role of this PS layer is to serve as an antireflection coating. In this way, we have obtained d-PS layers on these solar cells. The paper present observation of d-PS microstructure with SEM as well as measurements of its effective reflectance at the level of 2.5% in the 400–1000 nm length wave range. The efficiency of the solar cells with this structure is about 12%.  相似文献   

3.
In order to optimize the efficiency of multicrystalline silicon solar cells, the influence of specific process steps and sequences were studied. Therefore clean-room high efficiency as well as industrial screen-printed cells were fabricated. Benefits are found in choosing a substrate with lower base resistivity, using front and rear oxide passivation, using hydrogen passivation for bulk and surfaces, the use of Si3N4 with a double function i.e. as an anti-reflection and passivation layer and the use of mechanical V-grooving. Efficiencies of 17% are found on 4 cm2 clean-room fabricated cells and 15.2% has been obtained on 100 cm2 V-grooved screenprinted industrial cells.  相似文献   

4.
This paper describes how the efficiency and throughput of industrial screen-printed multi-Si solar cells can be increased far beyond the state-of-the-art production cells. Implementation of novel processes of isotropic texturing, shallow emitter or single diffusion selective emitter, combined with screen-printed metallization fired through a PECVD SiNx ARC layer, have been described. Novel dedicated fabrication equipment for emitter diffusion and a PECVD SiNx deposition system are developed and implemented thereby removing the processing bottlenecks linked to the diffusion and bulk passivation processes. Several types of back-contacted solar cells with improved visual appeal required for building integrated photovoltaic (BIPV) application have been developed.  相似文献   

5.
Two types of silicon (Si) substrates (40 n-type with uniform base doping and 40 n/n+ epitaxial wafers) from the silicon industry rejects were chosen as the starting material for low-cost concentrator solar cells. They were divided into four groups, each consisting of 20 substrates: 10 are n/n+ and 10 are n substrates, and the solar cells were prepared for different diffusion times (45, 60, 75 and 90 min). The fabricated solar cells on n/n+ substrates (prepared with a diffusion time of 75 min) showed better parameters. In order to improve their performances, particularly the fill factor, 20 new solar cells on n/n+ substrates were fabricated using the same procedure (the diffusion time was 75 min)—but with four new front contact patterns. Investigation of current–voltage (IV) characteristics under AM 1.5 showed that the parameters of these 20 new solar cells have improved in comparison to previous solar cells' parameters, and were as follows: open-circuit voltage (VOC=0.57 V); short circuit current (ISC=910 mA), and efficiency (η=9.1%). Their fill factor has increased about 33%. The IV characteristics of these solar cells were also investigated under different concentration ratios (X), and they exhibited the following parameters (under X=100 suns): VOC=0.62 V and ISC=36 A.  相似文献   

6.
A new method was developed for making a porous silicon layer as an anti-reflective coating on the top of crystalline silicon solar cells. The porous silicon layer was formed in a mixed solution of H2O2 and HF by using screen-printed Ag front electrodes as the catalyst. With the help of the catalytic effect, porous silicon layers were formed by treatment in a solution chemically milder than conventional solutions. The multi-crystalline silicon solar cell covered with the porous silicon layer showed a surface reflectance below 15% in a wavelength region of 400–800 nm.  相似文献   

7.
This paper presents, for the first time, a low-cost, high-throughput manufacturing approach for fabricating n-base dendritic web silicon solar cells with selectively doped emitters and self-aligned aluminum contacts using rapid thermal processing (RTP) and screen printing. The self-aligned locally diffused emitter (SALDE) structure is p+ nn++ where aluminum is screen-printed on a boron-doped emitter and fired in a belt furnace to form a deep self-doped p+-layer and a self-aligned positive contact to the emitter according to the well-known aluminum-silicon (Al---Si) alloying process. The SALDE structure preserves the shallow emitter (20.2 μm) everywhere except directly beneath the emitter contact. There the junction depth is greater than 5 μm, as desired, in order to shield carriers in the bulk silicon from that part of the silicon surface covered by metal where the recombination rate is high. This structure is realized by using n-base (rather than p-base) substrates and by utilizing screen-printed aluminum (rather than silver) emitter contacts. Prototype dendritic web silicon (web) cells (25 cm2 area) with efficiencies up to 13.2% have been produced.  相似文献   

8.
CdS/CdTe solar cells were fabricated by close-space sublimation with a screen-printed Te-rich CdTe source and their photovoltaic properties were investigated by varying the substrate temperature, cell area, and thicknesses of CdTe and ITO layers. The resistivity of CdTe layers employed in this study was 3×104 Ω cm. The optimum substrate temperature and thickness for CdTe deposition were 600°C and 5 μm, respectively. The CdTe bulk resistance degraded the cell performance above 6 μm. As the cell area increased the Voc remained almost constant, while the Jsc and FF were strongly degraded because of the increase of the lateral resistance of the ITO layer. The optimum thickness of the ITO layer in this study was 300–450 nm. In this experiment we obtained an efficiency of 9.4% in the 0.5 cm2 cells. The series resistance of the cell should be further reduced to increase the fill factor and improve the efficiency.  相似文献   

9.
The use of polycrystalline silicon layers on low-cost substrates is a promising approach for the fabrication of low-cost solar cells. Using low-carbon steel and graphite as substrates, solar cell structures have been deposited by the thermal decomposition of silane and appropriate dopants.Steel was selected as a substrate on the sole basis of its low cost. However, steel and silicon are not compatible in their properties, and an interlayer of a diffusion barrier, such as borosilicate, must be used to minimize the diffusion of iron from the substrate into the deposit. The deposited silicon on borosilicate/steel substrates is polycrystalline with a grain size of 1–5 μm, depending on deposition conditions. P-n junction solar cells were found to have low open-circuit voltages and poor current-voltage characteristics, and Schottky-barrier solar cells were found to show negligible photovoltages.Graphite is more compatible with silicon in properties than steel, and silicon deposited on graphite substrates shows considerably better microstructures. A number of solar cells, 2·5×2·5 cm in area, have been fabricated from n+-silicon/p-silicon/p+-silicon/graphite structures. The best cell to date had a Voc of 0·35 V and an AMO efficiency of 1·5% (no antireflection coating). This type of solar cell is very promising because of the simplicity in fabrication.  相似文献   

10.
Solar cells using iodine-doped polythiophene–porphyrin polymer films   总被引:1,自引:0,他引:1  
Wet-type organic solar cells containing 5,10,15,20-3-tetrathienylporphyrin (TThP) and polythiophene (PTh) films were fabricated. The TThP/PTh film was prepared on indium-tin-oxide (ITO) glass using an electrochemical polymerization method in an n-Bu4NPF6/CH2Cl2 solution. It was found that a small amount of iodine doping of the film improved the incident photon-to-electron conversion efficiency (IPCE) of a solar cell consisting of a TThP/PTh film and an aqueous electrolyte. A HOMO level measurement suggested that a modified HOMO level of the low iodine-doped TThP/PTh film allowed a fast electron transfer from PTh to a porphyrin moiety. To obtain further improvement, a sandwich-type solar cell using a 5% (w/w) aqueous solution of acetonitrile containing 0.05 M iodine and 0.5 M lithium iodide as an electrolyte was then fabricated. The solar cell absorbed light in the 300–800 nm wavelength range, converting this to a cathodic photocurrent with a maximum IPCE of 32% at 430 nm under irradiation of 5.0×1014 photon cm−2 s−1. This value is about 10 times higher than that of the solar cells using an aqueous electrolyte. The total energy conversion efficiency (η) of the solar cell under simulated sunlight reached 0.12% for 2.59 mW cm−2 at AM1.5 and 0.05% for 100 mW cm−2 at air mass 1.5.  相似文献   

11.
In order to manufacture high-efficiency Si solar cells with a passivated rear surface and local contacts, it is necessary to develop both an excellent rear-passivation scheme compatible with screen-printing technology and a robust patterning technique for local contact formation. In this work, we have fabricated Si solar cells on ∼130 μm thick substrates using manufacturable processing, where rear side was passivated with a plasma-enhanced chemical vapor deposited SiOx/SiNx/SiOxNy stack and local back contacts using laser. As a result of both the rear surface passivation stack and the laser-fired local contacts, cell efficiencies of up to 17.6% on a 148.6 cm2 Float-zone Si wafer and 17.2% for a 156.8 cm2 multicrystalline Si wafer were achieved. PC-1D calculations revealed that the cells had a back surface recombination velocity (BSRV) of ∼400 cm/s and a back surface reflectance (BSR) of over 90%, as opposed to standard full Al-BSF cells having a BSRV of ∼800 cm/s and a 70% BSR. This result clearly indicates that the new technique of the passivation scheme and the patterning using laser developed in this study are promising for manufacturing high-efficiency PERC-type thin Si solar cells.  相似文献   

12.
The diffusional permeability of I3 ion in acetonitrile in free standing TiO2 membrane with a porosity of 55% was examined. The apparent diffusion coefficient, Dapp at 25°C of the ion was found to be 3.4×10−6 cm2 −1, an order of magnitude smaller than the free diffusion at the same temperature. The temperature dependency of Dapp was measured in the range 0–30°C and analysed in terms of the Walden product. The diffusional activation energy was found to be 13.5 kJ/mol. The parameters of interest for the efficiency of mesoscopic wet solar cells are discussed. A back of an envelope calculation shows that although the obstructed diffusion coefficient of the I3 ion was an order of magnitude smaller than the free diffusion the diffusional flux is still sufficient to meet a current density of 50 mA cm−2. At incident photon flux of 1 kW m−2 and at a photopotential of 0.6 V this would correspond to a solar energy efficiency of approximately 30%.  相似文献   

13.
Dye-sensitized solar cells based on nanoporous oxide semiconductor thin films such as TiO2, Nb2O5, ZnO, SnO2, and In2O3 with mercurochrome as the sensitizer were investigated. Photovoltaic performance of the solar cell depended remarkably on the semiconductor materials. Mercurochrome can convert visible light in the range of 400–600 nm to electrons. A high incident photon-to-current efficiency (IPCE), 69%, was obtained at 510 nm for a mercurochrome-sensitized ZnO solar cell with an I/I3 redox electrolyte. The solar energy conversion efficiency under AM1.5 (99 mW cm−2) reached 2.5% with a short-circuit photocurrent density (Jsc) of 7.44 mA cm−2, a open-circuit photovoltage (Voc) of 0.52 V, and a fill factor (ff) of 0.64. The Jsc for the cell increased with increasing thickness of semiconductor thin films due to increasing amount of dye, while the Voc decreased due to increasing of loss of injected electrons due to recombination and the rate constant for reverse reaction. Dependence of photovoltaic performance of mercurochrome-sensitized solar cells on semiconductor particles, light intensity, and irradiation time were also investigated. High performance of mercurochrome-sensitized ZnO solar cells indicate that the combination of dye and semiconductor is very important for highly efficient dye-sensitized solar cells and mercurochrome is one of the best sensitizers for nanoporous ZnO photoelectrode. In addition, a possibility of organic dye-sensitized oxide semiconductor solar cells has been proposed as well as one using metal complexes.  相似文献   

14.
The development of a low-cost substrate is one of the major technological challenges for crystalline Si thin-film solar cells. Zirconium silicate (ZrSiO4) ceramics is a material which can meet the demanding physical requirements as well as the cost goals. Thin microcrystalline Si films were deposited by atmospheric pressure CVD on ZrSiO4-based ceramic substrates coated with barrier layers. The Si film was transferred into a multicrystalline grain structure by zone-melting recrystallization (ZMR). Film growth was analyzed in situ and correlated with substrate and barrier layer properties. Thin-film solar cells were fabricated from selected coarse-grained films. The best solar cell achieved an efficiency of 8.3% with a short circuit current density of 26.7 mA/cm2. The effective diffusion length obtained from internal quantum efficiency measurements was about 25 μm.  相似文献   

15.
ZnO and Ni films were used as the diffusion barrier layer between Al and n-type μc-Si:H for the hydrogenated amorphous silicon (a-Si:H) solar cells on polyimide (PI) substrate. The electrical, optical and uniformity properties of ZnO or Ni film influence strongly the performance and uniformity of solar cells. The uniformity of the solar cells with ZnO diffusion barrier layer degraded with the increasing thickness of ZnO film. The uniformity of solar cells with Ni diffusion barrier layer was more than 90%, which was generally better than those with ZnO film. A power-to-weight ratio of 200 W/kg was obtained for a-Si:H thin-film solar cell on PI substrate with a size of 14.8 cm2.  相似文献   

16.
One promising strategy for achieving high-quality polycrystalline silicon thin-film solar cells on glass is based on low-temperature ion-assisted deposition for epitaxial thickening of a thin, large-grained seeding layer on glass. The crystal growth on the seeding layer is influenced by various factors, amongst which the crystal orientation of the grains plays a substantial role. In this paper we investigate how the electronic properties of solar cells grown on “ideal” seeding layers (Si wafers) are influenced by the crystallographic orientation of the substrate. The Si wafers are heavily doped p-type, ensuring that their contribution to the photogenerated current is small. The films grown on (1 0 0)-oriented Si substrates have a very low density of structural defects, while the films grown on (1 1 1)-oriented Si substrates display a high density of twin defects. The electronic properties of the thin-film solar cells were investigated by means of open-circuit voltage measurements as a function of the incident light intensity. The (1 0 0)-oriented diodes consistently exhibit a higher Voc than the (1 1 1)-oriented diodes throughout the entire illumination range from 10−3 to 103 Suns. We determine 7 μm as the bulk minority carrier diffusion length of the as-grown (1 0 0)-oriented Si film. A lower bound of 3 μm was found for the bulk minority carrier diffusion length in the as-grown (1 1 1)-oriented Si film. The performances of both types of solar cells were improved by hydrogenation in an ammonia plasma. At voltages around the 1-Sun maximum power point the improvement is due to a reduction of non-ideal current mechanisms. The diffusion length of the (1 0 0) diode remains unaffected by hydrogenation while the lower bound of the diffusion length of the (1 1 1) diode improves to 10 μm.  相似文献   

17.
Monolithically-integrated tandem photoanodes were fabricated on substrates consisting of epitaxial n-GaAs1-xPx (x ? 0.32) grown on n+-GaAs wafers. A p+-n junction photovoltaic (PV) cell was first formed by zinc diffusion into the n-GaAs0.68P0.32 from a deposited ZnO coating. After diffusion the ZnO serves as a transparent electrical contact to the resulting p+-GaAs0.68P0.32 surface layer. Transparent, conducting SnO2:F provides chemical and mechanical protection for the ZnO and the underlying PV cell, and it electrically connects this cell to a top BiVO4 photocatalyst layer. In some photoanodes, a WO3 thin film was interposed between the SnO2:F and BiVO4. All oxide coatings were produced by ultrasonic spray pyrolysis except WO3, which was spin coated. Unassisted (unbiased) solar water splitting was achieved, with a solar-to-hydrogen efficiency approaching 2%, without addition of any co-catalyst to the BiVO4 surface. This work can provide insights to other researchers regarding scalable, low cost approaches for the planar monolithic integration of oxide photoanode materials with PV cells to create new tandem devices.  相似文献   

18.
New directions in photovoltaics depend very often on financial possibilities and new equipment. In this paper, we present the modification of a standard screen-printing technology by using an infrared (IR) furnace for forming a n+/p structure with phosphorus-doped silica paste on 100 cm2 multicrystalline silicon wafers. The solar cells were fabricated on 300 μm thick 1 Ω cm p-type multicrystalline Bayer silicon. The average results for 100 cm2 multicrystalline silicon solar cells are: Isc=2589 mA, Voc=599 mV, FF=0.74, Eff=11.5%. The cross-sections of the contacts metallized in the IR furnace, as determined by scanning electron microscopy, and the phosphorus profile measured by an electrochemical profiler are shown. IR processing offers many advantages, such as a small overall thermal budget, low power and time consumption, in terms of a cost-effective technology for the continuous preparation of solar cells.  相似文献   

19.
Introduction of deep level defects during thermal diffusion of phosphorous (P) in silicon (Si) using spin-on-doping (SOD) from phosphosilicate glass (PSG) was studied using deep level transient spectroscopy (DLTS). The structure was utilized as a solar cell and defect-induced-degradation of the cell efficiency was studied and modeled. The light current-voltage (LIV) measurements performed on as-fabricated solar cell yielded open circuit voltage, short-circuit current density, fill factor (FF) and efficiency to be 540 mV, 24 mA/cm2, 40% and 5%, respectively. Whilst the simulation of the similar solar cell using AFORS-HET software revealed significantly higher data than the experimental ones. However, by including three deep level defects H1-H3 (holes) having activation energies (eV) 0.23, 0.33 and 0.41 in the modeled solar cell, the simulated results were observed in remarkably good agreement with experimental data. Our DLTS measurements practically witnessed H1-H3 defect levels in p-layer of the cell.  相似文献   

20.
In this research, to optimize the surface of the photoanode, two different types of surface coatings were used and their effects on the photovoltaic parameters were investigated. Also, to compare the two different electrolytic systems based on liquid and gel‐state electrolyte, the novel magnetic core‐shell nanocellulose/titanium chloride (Fe3O4@)NCs/TiCl) nanocomposite was introduced into a polymeric system as a nanofiller to decrease the crystallinity of the polymer and enhance the diffusion of triiodide ions in quasisolid‐state dye‐sensitized solar cells (QS‐DSSCs). For this purpose, Fe3O4@)NCs/TiCl was synthesized by coprecipitation of Fe3+ and Fe2+ ions in the presence of nanocellulose and then used as magnetic support for bonding TiCl4 to prepare QS‐DSSCs. Containing a 10.0 wt% magnetic nanocomposite, it displayed a higher apparent diffusion coefficient (Dapp) for I3? ions (4.10 × 10?6 cm2/s) than the gel polymeric electrolyte (GPE) did (1.35 × 10?6 cm2/s). GPEs were characterized using various techniques including current density‐voltage curves, AC impedance measurements, and linear sweep voltammetry (LSV). The photovoltaic values for the short‐circuit current density (Jsc), open‐circuit voltage (VOC), and fill factor (FF) and the energy conversion efficiency (η) of the novel Fe3O4@NCs/TiCl nanocomposite–based QS‐DSSCs were 14.90 mA cm?2, 0.757 V, 64%, and 7.22%, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号