首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this work is to obtain deeper insight into the mechanism of the protective action of three imidazole-based corrosion inhibitors. Investigations were performed on copper in 3% NaCl, by electrochemical impedance spectroscopy and electrochemical quartz crystal microbalance measurements. The kinetic changes in the corrosion processes were monitored over time. In spite of similar molecular structure, differences in the inhibiting mechanism of three imidazole compounds were observed. The two inhibitors with a tolyl substituent decreased the copper corrosion rate due to the formation of a thin adsorbate layer; however, slow formation of a thick layer was observed for 4-methyl-1-phenyl imidazole. From electrochemical impedance spectroscopy studies, it was observed that all three inhibitors protected the copper efficiently, and in some cases, the degree of the protection increased with time.  相似文献   

2.
The aim of this work is to establish the correlation between the solution pH and the inhibiting efficiency of two imidazole compounds (4-methyl-1-phenyl imidazole and 4-methyl-1-(p-tolyl) imidazole) in protection of copper from corrosion in chloride media.It was found that the inhibiting efficiency of both studied imidazoles enhances with the increase of the solution pH value, from about 20% in 0.5 M HCl to 92% in 0.5 M NaCl. This improvement was ascribed to stronger adsorption of neutral imidazole molecule, which can be expected at higher pH values, than that of the protonated imidazole cation, which may be expected in acid solutions.  相似文献   

3.
This paper presents the investigation of diniconzole and triadimefon as chemical corrosion inhibitors for freshly polished copper in synthetic seawater (3.5% NaCl solution). Determination of weight loss, polarization curves, electrochemical impedance spectroscopy (EIS), and SEM, were performed to analyze the inhibiting performance of these compounds. Polarization curves show that they act as mixed-type inhibitors. EIS indicates that an adsorption film of the inhibitors is formed on copper surface. The highest values of inhibition efficiency are respectively, 99.2% and 97.3% at 100 mg/L concentration. Thermodynamic calculation suggests that chemisorptions between the compounds and copper are accordance with Langmuir adsorption isotherm.  相似文献   

4.
The adsorption and corrosion protection effect of phytic acid calcium (PAC) film on the copper surface in 3 wt% NaCl solution was investigated using potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), and Raman spectroscopy. Polarization curves indicate that PAC is a mixed inhibitor, affecting both cathodic and anodic corrosion currents. The inhibition efficiency of PAC film reached 92.53% at an optimized condition. Adsorption of PAC molecules on the surface followed Langmuir adsorption isotherm and the standard Gibbs energy of −37.32 kJ mol−1 indicated a chemisorptive way. Raman studies suggested that PAC molecule chemically anchored at the surface via PO groups.  相似文献   

5.
Several electrochemical methods were employed to confirm the ability of caffeine (1,3,7-trimethylxanthine) to adsorb on zinc surface in aerated ethanol solutions. The interaction between the organic compound and the electrode surface was dependent on the electrode potential. Adsorption on the electrode surface was confirmed by comparing the voltammograms, Tafel plots and EIS curves of a zinc electrode in the absence and presence of dissolved caffeine. The calculated standard free energy of adsorption confirms a spontaneous chemical adsorption step.  相似文献   

6.
Adsorption of plain azole molecules in protonated, neutral, and deprotonated forms on Cu(1 1 1) was characterized by density functional theory calculations. Both metal/vacuum and metal/water interfaces were considered and solvent effects were estimated by continuum solvation model. It is shown that chemisorptive bonding is by and large the strongest for deprotonated inhibitors. Only for imidazole the aqueous-phase adsorption free energy of the neutral form is comparable to that of deprotonated form. This suggests that for imidazole—because of its more basic nature—the neutral form and for triazole and tetrazole their deprotonated forms are the active species for inhibiting corrosion.  相似文献   

7.
Corrosion inhibition behavior of 2-amino-5-(4-pyridinyl)-1,3,4-thiadiazole (4-APTD) monolayers on copper surface were investigated by electrochemical impedance spectroscopy (EIS), electrochemical polarization measurement and surface-enhanced Raman scattering (SERS) experiment. The EIS mechanism of the copper surface with 4-APTD monolayers fitted to the mode of R(Q(R(QR))). The electrochemical polarization measurements indicated high inhibition efficiency of about 90.4%. SERS results suggested that 4-APTD molecules anchored at copper surface in a tilted orientation directly via N3 and N12 atoms. The transition adsorption states of 4-APTD on the copper surface were observed as the potential applied from 0 to −1.6 V vs. SCE.  相似文献   

8.
The corrosion inhibition properties of newly synthesized 1-(2-pyrrole carbonyl)-benzotriazole (PCBT) and 1-(2-thienyl carbonyl)-benzotriazole (TCBT) in combination with the non-ionic surfactant Triton X-100 (TX-100) on metallic copper were studied in ground water environment and the results were compared with benzotriazole (BTA). Various electrochemical studies such as open circuit potential (OCP), potentiodynamic polarization, ac impedance and cyclic voltammetric (CV) were made. Surface analytical techniques like FT-IR and XRD were also performed. The results indicated that PCBT is a better corrosion inhibitor for copper and the formulation consisting of PCBT and TX-100 offered improved inhibition efficiency (IE) in a synergistic manner.  相似文献   

9.
In Part I of this study, the high corrosion inhibition effectiveness of 2-mercaptobenzimidazole (MBIH) in 3 wt.% NaCl solution was unambiguously proven. In Part II, using angle-resolved X-ray photoelectron spectroscopy (XPS), the surface chemical structure and composition of adsorbed MBIH on Cu from the same solution was investigated. It was found that MBIH molecules are directed toward the Cu surface through their N and S atoms. The MBIH layer thickness is 1.9 ± 0.5 nm, as determined from a detailed analysis of the background in the XPS spectra. Tentative MBIH orientations on Cu were suggested based on the XPS measurements.  相似文献   

10.
Mathematical models were built to predict sodium phosphate inhibition of copper corrosion in aqueous chloride and sulphate media. SEM-EDXS and AFM were used to characterize material surfaces without and with inorganic salt addition. Inhibitor efficiency was compared with that exhibited by benzotriazole.  相似文献   

11.
Inhibiting effect of two novel non-toxic thiadiazole derivatives on copper were investigated in 3.5% NaCl solution using weight loss and electrochemical measurements. Presence of inhibitors and increase of concentration greatly decrease corrosion rate, parameters determined from polarization curves and EIS plots show that inhibitors decrease both cathodic and anodic current densities, suppressing charge transfer process by adsorption on copper surface. Thermodynamic calculation indicates chemisorption obeys Langmuir isotherm. Surface layers were characterized by SEM coupled with EDX. Raman micro-spectroscopy reveals that inhibitor molecules suppress copper corrosion via formation of thiadiazole–Cu complex. Relationships between inhibition efficiency and molecular orbital were also evaluated.  相似文献   

12.
The efficiency of a new corrosion inhibitor, the bis-(4-amino-5-mercapto-1,2,4-triazol-3-yl)-butane (BAMTB), on copper was investigated in an aerated 3% NaCl solution using various techniques. Voltammetry, chronopotentiometry and electrochemical impedance spectroscopy (EIS) were performed to evaluate the inhibition efficiency of BAMTB. The surface layers were also characterized by Raman micro-spectroscopy and by scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy (EDX). Potentiodynamic polarization curves showed that BAMTB is a mixed-type inhibitor for copper in neutral chloride solution and is even more efficient than the reference compound benzotriazole.  相似文献   

13.
H. Tian  W. Li  B. Hou 《Corrosion Science》2011,(10):3435-3445
Effects of a hormone biosynthetic inhibitor on corrosion resistance of copper in synthetic seawater under various conditions were evaluated via quantum chemistry calculations, weight loss, electrochemical techniques, SEM, EDS, and FTIR. Comparable results show that uniconazole acts as a mixed-type inhibitor, suppressing charge transfer process by adsorption on copper surface. Thermodynamic calculation indicates that chemisorption is in accordance with Langmuir isotherm and adsorption amount increases with immersion time. The corrosion resistance with inhibitor under alkaline conditions is better than that under acidic or neutral conditions. Good inhibition performances at different temperatures and during a long time immersion are observed.  相似文献   

14.
Three dosages of ions are evaluated as corrosion inhibitors of copper in artificial tap water by measuring the corrosion potential, polarization resistance, electrochemical impedance and reflectance spectra. The water is moderately hard, highly carbonated and chloride-rich. The results show that the surface film is composed by Cu2O. When the inhibiting agent is added, the film becomes thicker, denser and more compact. This behaviour is attributed to CuO incorporating into the passive layer. The optimal dosage of inhibitor is 10 mg l−1 P when the polarization resistance increases three times. The inhibitor retards the pit initiation, without hindering pit growth.  相似文献   

15.
The high corrosion inhibition effectiveness of 2-mercaptobenzimidazole (MBIH) in 3 wt.% aqueous NaCl solution is reported using long term immersion tests, 3D-profilometry, electrochemical impedance spectroscopy, and potentiodynamic curve measurements. The high corrosion inhibition performance was proven after 180 days of immersion. The impedance spectra were characterized by two time constants relating to charge transfer and finite layer thickness or semi-infinite diffusion of copper ions through the surface layer, therefore Cu corrosion in solution containing MBIH follows kinetic-controlled and diffusion-controlled processes. Moreover, it is shown that MBIH is a mixed-type inhibitor.  相似文献   

16.
Copper corrosion in sodium dodecyl sulphate (SDS) solutions and carbon nanotube (CNT) nanofluids were studied by potentiodynamic polarization. For the corrosion current densities calculations, Koutecky–Levich equation was modified to model the combined charge and mass transport. 0.005 M SDS reduced the copper corrosion current density by 81%. Higher SDS concentrations enhanced corrosion. Stirring SDS solutions increased the corrosion current density by ∼75%. By adding CNT to SDS solution, the corrosion current density first decreased and then remained constant. Stirring CNT nanofluids didn’t change the corrosion current density. An adsorbed CNT layer on copper controlled the corrosion process in CNT nanofluids.  相似文献   

17.
2-Mercaptobenzoxazole (MBOH) was studied as a corrosion inhibitor for Cu in 3 wt.% NaCl solution using EIS, a potentiodynamic curve, 3D-profilometry, and XPS measurements. It was shown that Cu corrosion in solution containing MBOH follows kinetic-controlled and diffusion-controlled processes and that MBOH is a mixed-type inhibitor. The diffusion coefficient of the Cu ions travelling through the solid surface layers was estimated to be on the order of 10−15–10−14 cm2 s−1. It was also demonstrated that the Cu(I)–MBOH complex is formed on the Cu surface and that the thickness of this surface layer is 1.4 ± 0.4 nm.  相似文献   

18.
The effect of methyl, phenyl, and mercapto substituents on electronic structure of imidazole type inhibitors was characterized by density-functional-theory calculations. The most coherent trend is observed for chemical hardness. It is demonstrated that, in general, larger molecules are chemically softer provided they belong to the same chemical type. The electronegativity is reduced by methyl and mercapto substituents and increased by phenyl substituent. It is further shown that phenyl substituent reduces the solvation free energy thus increasing the relative tendency of the molecule to get adsorbed on the surface, which may contribute to the increased inhibition effectiveness against corrosion of copper.  相似文献   

19.
Phytic acid (C6H18O24P6), the principal phosphorous storage form in many plant tissues, is a green material. A polypyrrole (PPy) doped with phytic acid (IP6) was electrosynthesised on copper from an aqueous phytic acid solution. Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and SEM were used to characterise the polymer. The polymer-covered copper was subjected to a corrosion test in NaCl solution. The dissolution of copper covered with PPy-IP6 was found to be greatly inhibited in NaCl solution. The inhibition indicated protection of the PPy-IP6 layer against copper corrosion.  相似文献   

20.
A new experimental method has been applied to evaluate under-deposit corrosion and its inhibition by means of an electrochemically integrated multi-electrode array, namely the wire beam electrode (WBE). Maps showing galvanic current and corrosion potential distributions were measured from a WBE surface that was partially covered by sand. Under-deposit corrosion did not occur during the exposure of the WBE to carbon dioxide saturated brine under ambient temperature. The introduction of corrosion inhibitor imidazoline and oxygen into the brine was found to significantly affect the patterns and rates of corrosion, leading to the initiation of under-deposit corrosion over the WBE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号