首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cathodic behaviour of oxides formed on titanium electrodes in physiological solutions at potentials between 3 and 5 V (vs. SCE) was studied by cyclic voltammetry. In case of anodic polarization at potentials higher than 3 V (vs. SCE), a cathodic peak at ∼0.4 V (vs. SCE) appears in the cathodic scan, which could be due to the reduction of unstable peroxides. The results show that this peak depends on the anodic potential and the oxidation time. This behaviour supposedly is due to the formation of unstable titanium peroxides like TiO3 during anodization. Based on repetitive oxidation-reduction processes can be concluded that the created amount of TiO3 inside of the TiO2 surface layer seems to be constant.  相似文献   

2.
Growth of anodic oxide films on AC2A alloy in sulphuric acid solution   总被引:1,自引:0,他引:1  
Growth behaviour of anodic oxide films on AC2A Al cast alloy was investigated in sulphuric acid solution using SEM, optical microscope (OM) and confocal scanning laser microscope (CSLM) and energy dispersive spectroscopy (EDS). The AC2A alloy contains three different types of second-phase particles: Al–Cu, Al–Cu–Fe–Si and Al–Si particles. The growth of anodic oxide films was critically retarded by the presence of non-reactive particles of Al–Si, while little effect was observed by the presence of active particles of Al–Cu and Al–Cu–Fe–Si. The most severe retardation effect on the growth of anodic films on AC2A alloy resulted from agglomerated Al–Si particles.  相似文献   

3.
Effect of anodic oxidation parameters on the titanium oxides formation   总被引:1,自引:0,他引:1  
The aim of this paper is to evaluate the effects of titanium anodic oxidation in a sulphuric acid electrolyte on the crystallinity of the oxide layer and to adjust the process parameters, in order to maximize the TiO2 crystalline phase, specially for what concerns the anatase form. In particular, the relationship between anatase formation and anodization parameters, such as current density and applied potential, will be evidenced. From XRD analysis two opposite trends emerged: oxide conversion to anatase is promoted either by an increase in current density or by a decrease in sulphuric acid concentration.  相似文献   

4.
The kinetics of anodic dissolution of silver and Ag–Au alloys (XAu = 0.1–30 at.% Au) in aqueous alkaline solution under the conditions of the formation of silver oxides has been examined. The techniques of cyclic voltammetry, chronoammetry, and photopotential measurements have been used. It was established that the anodic formation and cathodic reduction of Ag2O on silver and alloys are controlled by migration in the oxide layer. Ag2O oxide is an n-type semiconductor with an excess of silver atoms. Oxide layers formed on monocrystalline Ag(1 1 1) and Ag(1 1 0) are more stoichiometric than the layer formed on polycrystalline Ag.  相似文献   

5.
Single pulse anodizing of aluminium micro-electrode has been employed to study the behaviour of dielectric breakdown and subsequent oxide formation on aluminium in alkaline silicate and pentaborate electrolytes. Current transients during applying pulse voltage have been measured, and surface has been observed by scanning electron microscopy. Two types of current transients are observed, depending on the electrolyte and applied voltage. There is a good correlation between the current transient behaviour and the shape of discharge channels. In alkaline silicate electrolyte, circular open pores are healed by increasing the pulse width, but such healing is not obvious in pentaborate electrolyte.  相似文献   

6.
The deterioration of AA2024, AA6061 and AA7475 anodised in an environmentally-compliant tartaric acid/sulphuric acid electrolyte has been examined as a function of the immersion time in the electrolyte after termination of anodising. By transmission electron microscopy and scanning electron microscopy, degradation of the porous oxide film was qualitatively observed on AA2024. Electrochemical impedance spectroscopy revealed that AA2024 and AA7075 were more sensitive to prolonged immersion in the anodising electrolyte compared with AA6061, due to increased barrier layer thinning rates and increased susceptibility to localized corrosion. Salt spray tests confirmed the previous, indicating decay of anticorrosion performance for AA2024 and AA7075.  相似文献   

7.
Anodised zirconium (Zr) foil at 20 V for 1 h in Na2SO4 with 0.5 wt.% NH4F resulted in 6 μm thick anodic oxide film with nanotubular structure. At 50 V the anodic layer is consisted of an irregular inner layer with the nanotubular structure only at the top of the layer. Nonetheless, the anodic oxides formed are crystalline and photocatalytic ability of the anodic oxide was assessed by photodegradation of methyl orange.  相似文献   

8.
Influences of electrolyte, pre-thermal treatment and substrate composition have been examined to elucidate the mechanism of field crystallization of anodic niobia formed on magnetron-sputtered niobium. The field crystallization occurs during anodizing at 100 V in 0.1 mol dm−3 ammonium pentaborate electrolyte at 333 K, with the crystalline oxide growing more rapidly than the amorphous oxide, resulting in petal-like defects. The nucleation of crystalline oxide is accelerated by pre-thermal treatment of the niobium at 523 K in air, while vacuum treatment hinders nucleation. Notably field-crystallization is also absent in 0.1 mol dm−3 phosphoric acid electrolyte or when anodizing Nb-10at.%N and Nb-29at.%W alloys in the ammonium pentaborate electrolyte. The behaviour is explained by the role of the air-formed oxide in providing nucleation sites for field crystallization at about 25% of the thickness of the subsequently formed anodic film, the location being due to the growth mechanism of the anodic oxide and the nature of crystal nuclei. Incorporation of tungsten, nitrogen and phosphorus species to this depth suppresses the field crystallization. However, boron species occupy a relatively shallow layer and are unable to affect the nucleation sites.  相似文献   

9.
The relationship between the microstructural and internal stress evolution during Ti anodising is discussed. Samples anodised galvanostatically to 12 V and 40 V, corresponding to different stages of the internal stress evolution, were examined by in-plane and cross-section transmission electron microscopy. Electron diffraction patterns have been complemented with stoichiometry data obtained from energy loss near edge structure spectra. The sample anodised to 40 V was observed to consist of two regions, with a crystallised inner region adjacent to the metal/oxide interface. Crystallisation of this region is associated with the presence of large compressive internal stresses which build up during anodising up to 12 V.  相似文献   

10.
The behaviour of Nd3+ ions is examined in porous anodic alumina films formed at 5 mA cm−2 in 0.4 M phosphoric acid at 293 K on aluminium substrates that contain a buried 5 nm-thick tracer band of Al-Nd alloy. The Nd3+ ions migrate outward in the barrier region about twice as fast as Al3+ ions. The neodymium was located in the anodic film by transmission electron microscopy and scanning electron microscopy, and quantified by Rutherford backscattering spectroscopy. The Nd3+ ions migrated to the cell walls and to pore base, depending upon their location in the substrate relative to the alumina cells and pores. Nd3+ ions that reached the pore base were lost to the electrolyte. The outward transport of the Nd3+ ions was greatest beneath the pores and least at the cell boundaries, resulting in transformation of the planar tracer layer of the substrate to a roughly hemispherical shape in the film. The behaviour contrasts with that of a tracer band of slowly migrating W6+ ions, which reveals an approximately inverse distribution, while W6+ ions are retained within the film.  相似文献   

11.
MgO coatings were prepared on magnesium alloy surface by an anodic electrodeposition process in concentrated KOH solution followed by heat treatment in air. The phase composition and microstructure of the as-formed MgO coatings were analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The corrosion behavior of the MgO-coated samples was evaluated by electrochemical measurements and immersion tests in Hanks’ solution. The results showed that the MgO-coated Mg alloy exhibited a much superior stability and lower corrosion rate, and thus enabled to improve the corrosion resistance, whereas the bare Mg alloy suffered from severely localized corrosion attack.  相似文献   

12.
The present study demonstrates the significant influence of ageing in the formation electrolyte on the morphology and composition of anodic films grown on zirconium in 0.35 M ammonium fluoride in glycerol. Ageing after anodizing, by immersion in the electrolyte for 1 h, is shown to promote a transition from a porous to a nanotubular morphology, due to the dissolution of the fluoride-rich intratubular material in which the nanotubes are embedded. The morphological change is accompanied by a significant loss of zirconium and fluorine from the film. In contrast, ageing in deionized water has little influence on the films.  相似文献   

13.
During anodising of Al-Cu alloys, copper species are incorporated into the anodic alumina film, where they migrate outward faster than Al3+ ions. In the present study of an Al-1at.% Cu alloy, the valence state of the incorporated copper species was investigated by X-ray photoelectron spectroscopy, revealing the presence of Cu2+ ions within the amorphous alumina film. However, extended X-ray irradiation led to reduction of units of CuO to Cu2O, probably due mainly to interactions with electrons from the X-ray window of the instrument and photoelectrons from the specimen. The XPS analysis employed films formed on thin sputtering-deposited alloy/electropolished aluminium specimens. Such an approach enables sufficient concentrations of copper species to be developed in the anodic film for their ready detection.  相似文献   

14.
The anodic reactions of amorphous Ni–P alloys prepared by electroless plating were compared with pure Ni in 6 M KOH. The structure and surface components of Ni–P alloys before and after cyclic voltammetry (CV) scan were verified by using X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The CVs of Ni and Ni–P show many differences. Their CV properties are compared in different potential regions. The variation of the total anodic charge density suggests that the corrosion resistance of Ni is superior to that of amorphous Ni–P alloy in 6 M KOH under potential polarization.  相似文献   

15.
Ordered porous alumina layers prepared by two-step anodising in phosphoric, oxalic and sulphuric acids have been characterized at sub-nanometer scale using electron microscopy techniques. FEG-SEM and STEM-HAADF images allowed estimating the pore size, cell wall and pore wall thicknesses of the layers. Nanoanalytical characterization has been performed by STEM-EELS and STEM-X-EDS. Detailed features of the spatial distribution of anions in the pore wall of the films have been obtained. Maximum concentration of P-species occurs, approximately, at the middle of the pore wall; adjacent to the pore for C-species, whereas the distribution of S-species appears to be uniform.  相似文献   

16.
The kinetics of anodic dissolution of Cu and Cu-Au alloys (0.1-30 at.% Au) in aqueous chloride-containing universal buffer mixture (pH 1.25-11.90) in the potential range of insoluble Cu(I) products formation has been examined using the technique of multicyclic voltammetry and chronoamperometry of stationary and rotating electrodes. After the formation of anodic film, mass transport controls the dissolution; the phase where the transport is localised depends on the nature of the film, pH of the solution and the alloy composition. The initial stage of CuCl formation on Cu and low-concentration Cu-Au alloys is controlled by 2D-nucleation.  相似文献   

17.
AA2024 T3 alloy specimens have been anodised in tartaric acid/sulphuric media and tartaric acid/sulphuric media containing sodium molybdate; molybdate species were added to the anodising bath to enhance further the protection provided by the porous anodic film developed over the macroscopic alloy surface. Morphological characterisation of the anodic films formed in both electrolytes was undertaken using scanning electron and transmission electron microscopies; the chemical compositions of the films were determined by Rutherford backscattering spectroscopy that was complemented by elemental depth profiling using rf-glow discharge optical emission spectrometry. The electrochemical behaviour was evaluated using potentiodynamic polarisations and electrochemical impedance spectroscopy; the corrosion performance was examined after salt spray testing. The porous anodic film morphology was little influenced by the addition of molybdate salt, although thinner films were generated in its presence. Chemical composition of the anodic film was roughly similar; however, addition of sodium molybdate in the anodizing bath resulted in residues of molybdate species in the porous skeleton and improved corrosion resistance measured by electrochemical techniques that was confirmed by salt spray testing.  相似文献   

18.
The characteristics of oxide films on Al and Al1R alloys (R = rare earth metal = Ce, Y) galvanostatically formed (at a current density of 100 μA cm−2) in borate buffer solution (0.5 M H3BO3 + 0.05 M Na2B4O7·10H2O; pH = 7.8) were investigated by means of electrochemical impedance spectroscopy. EIS spectra were interpreted in terms of an “equivalent circuit” that completely illustrate the Al(Al1R alloy)/oxide film/electrolyte systems examined. The resistance of the oxide films was found to increase on passing from Al to Al1R alloys while the capacitance showed an opposite trend. The stability of the anodic oxide films grown in the borate buffer solution on Al and Al1R alloys was investigated by simultaneously measuring the electrode capacitance and resistance at a working frequency of 1 kHz as a function of exposure over a period of time to naturally aerated 0.01 M NaOH solution. Analyses of the electrode capacitance and resistance values indicated a decrease in chemical dissolution rate of the oxide films on passing from Al to Al1R alloys.  相似文献   

19.
The formation of porous anodic films on an Al-3.5 at.%W alloy is compared in sulphuric acid and borax electrolytes in order to investigate pore development processes. The findings disclose that for anodizing in sulphuric acid, the pores develop mainly due to the influences of field-induced plasticity of the film and growth stresses; in borax, field-assisted dissolution dominates. The films formed in sulphuric acid are consequently much thicker than the layer of oxidized alloy and tungsten species are retained in the film. In contrast, with borax, the films and oxidized alloy layers are of similar thickness and tungsten species are lost to the electrolyte. Efficiencies of film growth are also significantly different, about 65% in sulphuric acid and about 52% in borax. The retention of tungsten species during anodizing in sulphuric acid is due to the localization of tungsten in the inner regions of the barrier layer and cell walls, with a layer of anodic alumina separating the tungsten-containing regions from the electrolyte. For borax, the tungsten is distributed more uniformly through the film material, enabling loss of tungsten species to the electrolyte from the pore base.  相似文献   

20.
The structural features of anodic oxide films formed on an aluminum substrate coated with self-assembled microspheres were investigated by scanning electron microscopy and atomic force microscopy. In the first anodization in neutral solution, the growth of a barrier-type film was partially suppressed in the contact area between the spheres and the underlying aluminum substrate, resulting in the formation of ordered dimple arrays in an anodic oxide film. After the subsequent second anodization in acid solution at a voltage lower than that of the first anodization, nanopores were generated only within each dimple. The nanoporous region could be removed selectively by post-chemical etching using the difference in structural dimensions between the porous region and the surrounding barrier region. The mechanism of anodic oxide growth on the aluminum substrate coated with microspheres through multistep anodization is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号