首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The behaviour of E24 mild steel was studied by XPS analysis and electrochemical impedance spectroscopy (EIS) in a filtered solution of cement (pH 13), and an alkyl N-aminodiphosphonate aqueous solution called Aquadem® (7?pH?13). XPS results showed that the corrosion products developed in both media consisted of Fe2O3, covered by a very thin layer of goethite. The thickness of this oxide layer was estimated to be 3 nm. XPS analysis also demonstrated the adsorption of Aquadem® on the outer layer of FeOOH for pH lower than the zero charge pH of goethite (7.55). From XPS and EIS results, physical models of the E24 steel/electrolyte interface are proposed as a function of pH. For 11?pH?13, the steel is covered by a passive film, while for pH?10, pitting corrosion takes place. At pH 7, an additional mass transport phenomenon must be taken into account. The fitting procedure provided values for several physical parameters (electrolyte resistance, passive film resistance), from which the film capacitance and the dielectric constant of the oxide layer were calculated.  相似文献   

2.
The galvanic corrosion temporal increase observed on examination of the weld fusion zone (WFZ) of AA6061 laser weldments in 3.5 wt.% NaCl solution cannot be attributed to electron tunnelling as the surface oxide layer is too thick, or the presence of Cl within the surface layer as this element was not found to be present. Aluminium alloy and WFZ galvanic and surface analyses indicate that the cathodic WFZ corrosion characteristics are due to increases in silicate concentrations in the surface oxide layer, leading to increased ionic and/or p-type semi-conductor conductivity, intermetallic concentrations and surface area.  相似文献   

3.
The corrosion rate of electropolished 304 stainless steel surfaces (UNS S30400) is found to be lower by more than a factor of three relative to that determined previously for machined surfaces in mildly alkaline, hydrogenated water at 260 °C. This favorable result is attributed to significant changes in nanocrystallinity of the corrosion oxide layer caused by the removal of surface microstrain, which had been imparted during the machining process. In the absence of microstrain, a low-porosity, protective, corrosion layer forms that is composed of extremely small and uniformly-sized spinel oxide crystals. Application of scanning electron microscopy (FEG-SEM), X-ray diffraction and X-ray photoelectron spectroscopy (XPS) in conjunction with ion milling and target factor analyses, found the corrosion layer to consist of micrometer-size crystals of a ferrite-based spinel oxide (non-protective) over-laying nanometer-size crystals of a chromite-based spinel oxide (protective). Composition of both phases is unchanged from that previously observed on corroded, machined surfaces and is representative of solvus phases in the immiscible Fe(Fe1−nCrn)2O4 spinel binary. The smaller size (10 vs. 26 nm) and greater surface density (∼10,000 vs. 835 μm−2) of the chromite-based crystals relative to those formed on machined (i.e., cold-worked) surfaces, however, is consistent with the absence of preferred high energy nucleation sites on strain-free surfaces. Therefore, electropolishing, which removes surface microstrain induced by cold-working, represents a preferred reference surface condition.  相似文献   

4.
Physicochemical characterization of sludge obtained from refined hydrocarbons transmission pipeline was carried out through Mössbauer spectroscopy and X-ray diffraction. The Mössbauer and X-ray patterns indicate the presence of corrosion products composed of different iron oxide and sulfide phases. Hematite (α-Fe2O3), magnetite (Fe3O4), maghemite (γ-Fe2O3), magnetic and superparamagnetic goethite (α-FeOOH), pyrrhotite (Fe1−xS), akaganeite (β-FeOOH), and lepidocrocite (γ-FeOOH) were identified as corrosion products in samples obtained from pipeline transporting Magna and Premium gasoline. For diesel transmission pipeline, hematite, magnetite, and magnetic goethite were identified. Corrosion products follow a simple reaction mechanism of steel dissolution in aerated aqueous media at a near-neutral pH. Chemical composition of the corrosion products depends on H2O and sulfur inherent in fluids (traces). These results can be useful for decision-making with regard to pipeline corrosion control.  相似文献   

5.
4-Carboxyphenylboronic acid (CPBA) has been found to be an efficient carbon dioxide (CO2) corrosion inhibitor for steel in aqueous media. The results indicate that the addition of CPBA to CO2 containing sodium chloride solutions at a low concentration is able to retard corrosion anodic reactions, reduce corrosion current densities, increase charge transfer and total resistances, resulting in more uniform and smoother steel surfaces. These effects are attributed to the formation of a barrier layer on steel surface, which provides metal surface protection. The inhibitor was also found to mitigate corrosion by promoting random distribution of minor anodes.  相似文献   

6.
The present work reports the effect of aluminide layers on the aqueous corrosion behaviour of four different 316L stainless steels containing various nitrogen contents (0.015%, 0.1%, 0.2% and 0.56% N). Diffusion annealed aluminide layers are generated over the surface by heat treatment of the aluminium precoated alloys at 750 °C for 25 h in nitrogen atmosphere. X-ray diffraction patterns of the surface modified samples showed the presence of AlN, Al13Fe4 and FeAl2 phases. Diffusion of aluminum into the alloy, and the formation of AlN by the reaction of aluminium with matrix nitrogen, was identified using secondary ion mass spectrometry (SIMS). The nitrogen peak in the diffused layer was found to increase with increasing nitrogen content of the base alloy. SEM observation of cross-sectionally mounted alloys showed the presence of spherical AlN phase in addition to iron aluminide intermetallic phases. The role of such a composite surface layer containing intermetallic aluminides and nitride on the corrosion resistance of austenitic stainless steels in 0.5 M NaCl and 0.5 M sulphuric acid is discussed in greater detail based on open circuit potential (OCP)–time measurements, potentiodynamic polarisation studies and electrochemical impedance spectroscopy (EIS) investigations. The aluminide layered alloy with 0.1% N content showed better corrosion performance. The presence of nitrogen was found to have a positive effect in enhancing the hardness of the composite layer. Role of matrix nitrogen on the microstructure and microchemical distribution at the surface, and its role on corrosion resistance in acidic and chloride media are discussed in detail.  相似文献   

7.
Corrosion resistant structural materials of both iron and nickel based alloys are used in the electric power industry for the construction of the coolant loops of both conventional and nuclear power generating stations. These materials, in the presence of high temperature (e.g. 287 °C), high pH (e.g. 10.0 at 20 °C) water with dissolved hydrogen will oxidize and form corrosion films that are double metal oxides (or spinels) of the form AB2O4. This work describes optical reflectivity techniques that have been developed to study the growth of these films in situ. The optical technique uses a dual-beam specular reflection spectrometer to measure the spectrum of reflected light in small angle (i.e. <15°) scatter. The reflection spectra are then calibrated using a set of corrosion coupons with corrosion films that are well known. Results are compared with models based on multilayer reflection and Mie scattering from a particle size distribution. Surface roughness is found to be the dominant cause of reduced reflection as the films grow.  相似文献   

8.
Corrosion of a synthetic Cu-13Sn alloy with a dendritic structure was investigated in a low aggressive medium (0.01 M Na2SO4 aqueous solution). The corrosion rate was accelerated through anodic polarization of the alloy in a potential range close to the open-circuit potential. The composition of the corrosion layer was followed as a function of the polarization time, using scanning electron microscopy and energy dispersive spectrometry methods. The results clearly showed that bronze corrosion in these experimental conditions proceeds by decuprification. Selective copper dissolution leads to corrosion layers enriched in tin compounds. It was concluded that bronze is partially passivated through the presence of a tin oxide layer, which slows down copper dissolution rate, compared to pure copper.  相似文献   

9.
Much information is available on the atmospheric corrosion of copper and patina formation mechanisms in the short, mid and even long term. However, studies of the structure and morphology of patina layers are less abundant and mostly deal with patinas formed in the atmosphere over a small number of years. The present study concentrates on the structure and morphology of corrosion product films formed on copper after long-term atmospheric exposure (13-16 years) in five Spanish atmospheres of different types: rural, urban, industrial and marine (mild and severe). Characterisation has been performed by X-ray diffraction (XRD) and scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDS). Long-term copper corrosion is higher in industrial and marine atmospheres and lower in rural and urban atmospheres. In all cases a decrease in the corrosion rate with exposure time is observed. The formation of antlerite [Cu3SO4(OH)4] is seen in more acidic conditions and in specimen areas subject to a high time of wetness. The presence of nantokite (CuCl), which is not generally mentioned in field studies, has been detected under the cuprite layer very close to the base copper.  相似文献   

10.
We investigated the influence of silicate ions on the formation of goethite converted from hydroxysulphate green rust, which was synthesized by neutralizing mixted solution of Fe2(SO4)3 and FeSO4 with NaOH solution, by O2 in an aqueous solution. The pH and oxidation-reduction potential of the suspension and the Fe and Si concentrations in supernatant solutions were analyzed. X-ray diffraction results for the solid particles formed during the conversion were consistent with the results of the solution analyses. The results indicated that silicate ions suppressed the conversion from green rust to α-FeOOH and distorted the linkages of FeO6 octahedral units in the α-FeOOH structure.  相似文献   

11.
Recent advances in secondary ionization mass spectrometry (SIMS) techniques allow the resolution of differences in the natural abundances of the isotopes of 18O and 16O, and their ratio in both conducting and insulating materials. These techniques have been used in this study to measure the oxygen isotope signatures and their spatial distribution in corrosion products formed during high-temperature oxidation of steel boiler tubes from fossil-fuel power plants. The data obtained in this study are interpreted in terms of oxygen isotope fractionation between the available oxygen reservoirs and oxides formed on or within the metal. Results are presented for three different corrosion scenarios: steamside/fireside corrosion, aqueous phosphate corrosion and corrosion due to H2 damage. Constant, but isotopically depleted values observed in magnetites formed during steamside corrosion and H2 damage are indicative of interaction with locally derived meteoric water (which constitutes the boiler feed water). In contrast, isotope distributions in maricite (NaFePO4) suggest equilibrium fractionation between this phase and precursor magnetite. Oxygen isotope patterns in fireside magnetites exhibit a complex zoning that requires at least two isotopically distinct species with significantly different transport rates.  相似文献   

12.
Phytic acid (C6H18O24P6), the principal phosphorous storage form in many plant tissues, is a green material. A polypyrrole (PPy) doped with phytic acid (IP6) was electrosynthesised on copper from an aqueous phytic acid solution. Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and SEM were used to characterise the polymer. The polymer-covered copper was subjected to a corrosion test in NaCl solution. The dissolution of copper covered with PPy-IP6 was found to be greatly inhibited in NaCl solution. The inhibition indicated protection of the PPy-IP6 layer against copper corrosion.  相似文献   

13.
Self-healing mechanism of a protective film against corrosion of zinc at scratches in an aerated 0.5 M NaCl solution was investigated by polarization measurements, X-ray photoelectron spectroscopy (XPS) and electron-probe microanalysis (EPMA). The film was prepared on a zinc electrode by treatment in a Ce(NO3)3 solution and addition of aqueous solutions containing 9.98 or 19.9 μg/cm2 of Zn(NO3)2 · 6H2O and 55.2 μg/cm2 of Na3PO4 · 12H2O. After the coated electrode was scratched with a knife-edge crosswise and immersed in the NaCl solution for many hours, polarization measurements, observation of pit formation at the scratches, XPS and EPMA were carried out. This film was remarkably protective and self-healing against zinc corrosion on the scratched electrode. The cathodic and anodic processes of zinc corrosion were markedly suppressed by coverage of the surface except for scratches with a thin Ce2O3 layer containing a small amount of Ce4+ and the surface of scratches with a layer composed of Zn3(PO4)2 · 4H2O, Zn(OH)2 and ZnO mostly.  相似文献   

14.
The binary bronze alloy Cu-6Sn corrosion, and formation and properties of corrosion product layer (patinas) during 12 days of exposure to 15 mM Na2SO4 aqueous solution were investigated by a range of diverse experimental techniques. For the reasons of comparison, some techniques were applied, in parallel, to copper. Gravimetric measurements revealed lower corrosion rates of bronze than those of copper, probably caused by the presence of tin compounds in the corrosion product layer. Cyclic voltammetry results showed that the oxidation processes on bronze are affected by the formation of tin oxide species. Electrochemical impedance spectroscopy showed that, as opposed to copper which produced only two time constants, bronze corrosion resistance was dominated by the additional high-frequency time constant representing redox processes occurring at the corrosion product surface. SEM, ATR FTIR and PIXE results suggest that Cu-6Sn bronze corrosion in 15 mM Na2SO4 solution was impeded by the formation of two-layered structure of corrosion products that formed due to selective dissolution of copper at the layer/solution interface, leaving the outer layer enriched in highly corrosion resistant Sn oxi/hydrohide species.  相似文献   

15.
The corrosion and passivation behaviour of bulk polycrystalline martensite Ni50Mn30Ga20 and austenite Ni48Mn30Ga22 alloys was compared in electrolytes with different pH values. Linear anodic and cyclic potentiodynamic polarisation methods and anodic current transient measurements have been conducted for the alloys and their constituents to analyze free corrosion, anodic dissolution and passive layer formation processes. Electrochemically treated alloy surfaces were characterized with scanning electron microscopy (SEM) and angle-resolved x-ray photoelectron spectroscopy (XPS). The electrochemical response of both alloys is in principal similar and is dominated by the Ni oxidation. In acidic solutions (pH 0.5 and 5) a slightly higher reactivity is detectable for the martensitic alloy which is mainly attributed to enhanced dissolution processes at the multiple twin boundaries. In weakly acidic to strongly alkaline solutions (pH 5-11) both alloys exhibit a low corrosion rate and a stable anodic passivity. While air-formed films comprise NiOOH, Ga2O3 and MnO2, passive films formed in near neutral media (pH 5-8.4) are composed of Ni(OH)2, NiOOH and Ga2O3 in the outer region and of NiO, MnO2 and MnO in the metal-near region.  相似文献   

16.
Homogeneous and adherent polyaniline–montmorrilonite (MMT) nanocomposite coatings were electrosynthesized on aluminum (Al) alloy 3004 (AA 3004) by using the galvanostatic polarization method. The synthesized coatings were characterized by UV–Vis absorption spectrometry, Fourier transform infrared spectroscopy, X-ray diffraction patterns and scanning electron microscopy. The corrosion protection effect of the coatings was demonstrated by performing a series of electrochemical experiments of potentiodynamic and impedance measurements on Al in 3.5 wt% aqueous NaCl electrolytes. The corrosion current (icorr) values decreased from 6.55 μA cm−2 for uncoated Al to 0.102 μA cm−2 for nanocomposite-coated Al under optimal conditions.  相似文献   

17.
The corrosion behaviour of specimens cut from nuclear grade CANDU pellets has been studied electrochemically and under open-circuit corrosion conditions in hydrogen peroxide containing, slightly alkaline (pH=9.5) sodium perchlorate solution with and without added carbonate. The compositions of the electrode surfaces were determined using X-ray photoelectron spectroscopy (XPS). Three distinct ranges of behaviour are observed as a function of H2O2 concentration. For H2O2 concentrations lower than 10−4 mol/L, the UO2 corrosion potential is directly proportional to H2O2 concentrations. For H2O2 concentrations between 10−4 and 10−2 mol/L, the UO2 surface appears to be redox buffered by the H2O2 decomposition. For H2O2 concentrations higher than 10−2 mol/L, the formation of U(VI) corrosion product deposits may block H2O2 decomposition. Under these conditions UO2 corrosion is driven by reaction with H2O2. When carbonate is present, the formation of U(VI) deposits is avoided and H2O2 decomposition continues to occur at high [H2O2]. When the pH is decreased, UO2 dissolution is accelerated and for pH?5 uranyl peroxide deposits may form on the electrode surface. The importance of H2O2 decomposition at low pH (i.e. ?6) is not fully understood.  相似文献   

18.
Corrosion resistance of zinc-magnesium coated steel   总被引:1,自引:0,他引:1  
A significant body of work exists in the literature concerning the corrosion behaviour of zinc-magnesium coated steel (ZMG), describing its enhanced corrosion resistance when compared to conventional zinc-coated steel. This paper begins with a review of the literature and identifies key themes in the reported mechanisms for the attractive properties of this material. This is followed by an experimental programme where ZMG was subjected to an automotive laboratory corrosion test using acidified NaCl solution. A 3-fold increase in time to red rust compared to conventional zinc coatings was measured. X-ray diffraction, X-ray photoelectron spectroscopy and scanning electron microscopy were used to characterize the corrosion products formed. The corrosion products detected on ZMG included simonkolleite (Zn5Cl2(OH)8 · H2O), possibly modified by magnesium uptake, magnesium hydroxide (Mg(OH)2) and a hydroxy carbonate species. It is proposed that the oxygen reduction activity at the (zinc) cathodes is reduced by precipitation of alkali-resistant Mg(OH)2, which is gradually converted to more soluble hydroxy carbonates by uptake of atmospheric carbon dioxide. This lowers the surface pH sufficiently to allow thermodynamically for general precipitation of insoluble simonkolleite over the corroding surface thereby retarding the overall corrosion reactions, leaving only small traces of magnesium corrosion products behind. Such a mechanism is consistent with the experimental findings reported in the literature.  相似文献   

19.
Corrosion behaviour of commercial magnesium/aluminium alloys (AZ31, AZ80 and AZ91D) was investigated by electrochemical and gravimetric tests in 3.5 wt.% NaCl at 25 °C. Corrosion products were analysed by scanning electron microscopy, energy dispersive X-ray analysis and low-angle X-ray diffraction. Corrosion damage was mainly caused by formation of a Mg(OH)2 corrosion layer. AZ80 and AZ91D alloys revealed the highest corrosion resistance. The relatively fine β-phase (Mg17Al12) network and the aluminium enrichment produced on the corroded surface were the key factors limiting progression of the corrosion attack. Preferential attack was located at the matrix/β-phase and matrix/MnAl intermetallic compounds interfaces.  相似文献   

20.
The corrosion behavior of Mg–Y–Nd–Zr (WE43 commercial alloy) was investigated in Na2SO4 electrolyte using potentiodynamic polarization curves, X-Ray Photoelectron Spectroscopy (XPS), Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) depth profiles, Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectrometry (EDS) analyzes. SEM and EDS data show that Nd-rich precipitates are mainly located at the grains boundaries. Zr/Y-rich zones are distributed inside the most of the grains. XPS study indicates a depletion of Mg on surface that could be attributed to Mg dissolution and an enrichment of the addition element oxides. XPS and ToF-SIMS analyzes demonstrate that the corrosion films are made up of a magnesium hydroxide (Mg(OH)2) outer layer and an inner layer containing magnesium oxide (MgO), yttrium oxide (Y2O3) and hydroxide (Y(OH)3), mixed with a small amount of MgH2, zirconium oxide (ZrO2) and neodymium oxide (Nd2O3). The Y2O3 and Y(OH)3 signals increase slightly in the inner layer towards the corrosion film/alloy interface. Unlike these compounds, ZrO2 and Nd2O3 compound signals are constant inside the inner layer. It is concluded that: (i) neodymium, zirconium and yttrium play a key role in the slightly improved corrosion resistance of the alloy and (ii) the cathodic reaction is slower on WE43 than on pure Mg and AZ91.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号