首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Quenched Fe-C materials with up to 0.875 wt.% C were examined in 8.5 M NaOH at 100 °C to better understand the effect of carbon on caustic stress corrosion cracking (SCC) of plain steels. Carbon at contents up to about 0.23 wt.% C accelerated anodic dissolution of iron, whereas at high contents it hindered corrosion and promoted the formation of magnetite. It is suggested that carbon particles on the corroding surface form confined regions with an increased concentration of H+ and HFeO2, thereby favouring the formation of Fe3O4. Intergranular SCC can be explained by preferred anodic dissolution of grain boundary material enriched in carbon.  相似文献   

2.
The corrosion resistance of 1018 carbon steel, 304 and 316 type stainless steels in the LiBr (55 wt.%) + ethylene glycol + H2O mixture at 25, 50 and 80 °C has been studied using electrochemical techniques which included potentiodynamic polarization curves, electrochemical noise and electrochemical impedance spectroscopy techniques. Results showed that, at all tested temperature, the three steels exhibited an active-passive behavior. Carbon steel showed the highest corrosion rate, since both the passive and corrosion current density values were between two and four orders of magnitude higher than those found for both stainless steels. Similarly, the most active pitting potential values was for 1018 carbon steel. For 1018 carbon steel, the corrosion process was under a mixed diffusion and charge transfer at 25 °C, whereas at 50 and 80 °C a pure diffusion controlled process could be observed. For 316 type stainless steel, at 25 and 50 °C a species adsorption controlled process was observed, whereas at 80 °C a diffusion controlled mechanism was present. Additionally, at 25 °C, the three steels were more susceptible to uniform type of corrosion, whereas at 50 and 80 °C they were very susceptible to localized type of corrosion.  相似文献   

3.
K. Asami  M. Kikuchi 《Corrosion Science》2003,45(11):2671-2688
In-depth distribution of rusts on two weathering steels and a plain carbon steel exposed to atmosphere for 17 years under a bridge at a coastal + industrial region in Japan were studied. In the rust layer on all specimens, α-FeOOH, β-FeOOH, γ-FeOOH, Fe3O4 and so-called amorphous rust were found. Within rust layers, there were thick parts and thin parts, which were finely and complicatedly distributed on steels. Among these rust species, α-FeOOH was dominant on all specimens. α-FeOOH appeared almost homogeneously through the rust layer. Its concentration was higher on weathering steels than on plain carbon steel. β-FeOOH was found mainly at thick parts and was scarce at thin parts of rust layers. Concentration of α-FeOOH was higher and that of γ-FeOOH was lower on weathering steels than on plain carbon steel. Amorphous rust was located at the bottom of the rust layer irrespective of steel types. Concentration of magnetite was negatively correlated with concentration of β-FeOOH.  相似文献   

4.
The oxidation of iron in dry and wet O2 at 400-600 °C has been re-investigated using gravimetry, SEM/EDX, XRD and FIB. In the presence of O2, water vapour accelerates iron oxidation at 500 and 600 °C. At 400 and 500 °C the magnetite layer is duplex and exposure to water vapour results in the formation of blades on top of a fine-grained hematite layer. At 600 °C it results in a surface without needles and blades. The increased oxidation rate at 500 and 600 °C is attributed to a smaller grain size in the hematite layer resulting in faster ion transport.  相似文献   

5.
Constant elongation rate tests (CERTs) were carried out to investigate the effects of environmental factors of dissolved oxygen and temperature on the stress corrosion cracking (SCC) susceptibility of 3.5NiCrMoV turbine steels. Tests were conducted in pure water of various dissolved oxygen concentrations at temperatures of 50 °C-200 °C in the range of strain rates from 5 × 10−8/s to 1 ×  10−6/s. Dissolved oxygen significantly affected the SCC susceptibility of turbine steels in water. The SCC susceptibility of the turbine steels increases as the dissolved oxygen concentration in water increases. The elongation of the turbine steels tested in aerated water at 150 °C at a strain rate of 1 × 10−7/s decreased to half of that of the steels tested in deaerated water in the same test condition. And the SCC susceptibility of the steels increased with decreasing strain rate, and with increasing temperature. The increase of the SCC susceptibility of the turbine steels in the higher dissolved oxygen environment is considered to be due to the higher content of dissolved oxygen enhancing the reduction reactions of oxygen on the metal surfaces (cathode) and accelerating the dissolution rate at the crack tips (anode) by galvanic attack of an aeration cell.  相似文献   

6.
Corrosion of carbon steel in un-buffered NaCl solutions was studied applying linear potential sweep technique to a rotating disk electrode. Current-potential curves were obtained from linear potential sweep at a rate of 1 mV s−1 in solution with concentrations in the range 0.02-1 M NaCl and rotation rates in the range 170-370 rad s−1, at 22 °C. Potential sweeps, which were conducted in the potential range −700 to −100 mV/SHE, were started from the cathodic limit in order to approach the measurement of corrosion under rust-free conditions. Polarization curves were analyzed with a superimposition model developed ad hoc and implemented in a computer program, which enabled determining the corrosion rate and kinetics parameters of the underlying anodic and cathodic sub-processes. The anodic sub-process, dissolution of iron, was well described in terms of a pure charge transfer controlled reaction, while the cathodic sub-process, oxygen reduction on iron, was well described in terms of mixed mass transfer and charge transfer control. Increase of electrode rotation rate increases the limiting current of oxygen reduction, which results in an enhanced corrosion rate of carbon steel. Increase of NaCl concentration has a dual effect: the limiting current of oxygen reduction decreases as a result of the influence of NaCl concentration on solution viscosity and the anodic dissolution of iron increases due to the influence of NaCl on pitting formation. However, this last mechanism predominates and a net increase in carbon steel corrosion rate is observed in this case.  相似文献   

7.
The initiation and growth of iron metal dusting in CO-H2-H2O gas mixtures at 700 °C were investigated by surface observations of very early stages of the reaction. At first, iron was supersaturated with dissolved carbon and its surface became facetted. The nucleation of graphite and cementite depended on the surface crystallographic orientation. A fine grain structure at ground surfaces and a high carbon activity accelerated cementite nucleation. Further carburisation resulted in the formation of particulate areas mixed with deposited graphite, which accelerated the spallation of cementite and the protrusion of round particles. In some areas, large graphite mounds and bulk graphite were formed on the surface. Filamentous carbon was found in particulate areas and surrounding the graphite mounds. Based on these observations, a possible process of iron metal dusting was discussed.  相似文献   

8.
Effects of morpholine, 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), and dimethylamine (DMA) on oxidation kinetics and oxide phase formation/transformation of AISI 1018 steel at 120 °C were evaluated. Low carbon steel samples were exposed to steam in an autoclave containing amine added aqueous solution at pH of 9.5 for 1, 2, 4, 6, 8, and 12 h. Control samples exposed to plain steam and amines showed the highest and lowest weight loss respectively. Fourier Transform Infrared Spectrophotometry (FTIR) showed that DBU containing steam favored formation of magnetite (Fe3O4) while steam with DMA formed more α and γ-FeOOH. Transformation of magnetite to hematite (α-Fe2O3) was fastest for morpholine. Analysis of oxides morphology was done utilizing Scanning Electron Microscopy (SEM). Oxides formed in plain or DMA containing steam exhibited acicular particles of goethite/hematite (α-FeOOH/α-Fe2O3) compared to DBU containing steam that showed equiaxed particles of magnetite/maghemite (Fe3O4/γ-Fe2O3). Morpholine containing steam promoted agglomeration of thin sharp platelets into coarse flakes of hematite.  相似文献   

9.
304L and 316L steels were nitrided at 425 °C for 30 h and examined at various depths in 0.1 M Na2SO4 acidified to pH 3.0. In the near-surface region with about 7-14 wt% N, at potentials of active state anodic currents were much higher than those for untreated steels, whereas in deeper regions with <7 wt% N the currents were only slightly increased in comparison with untreated steels or they were even lower in passive and transpassive states. Surface films were composed of oxygen-containing species on top and of Cr-N species in deeper layers. It is suggested that strong corrosion of near-surface regions is associated with nitride precipitates. Beneficial effect of low nitrogen concentrations can be due to initially accelerated corrosion which leads to larger amounts of passivating species and to the accumulation of corrosion resistant chromium nitrides.  相似文献   

10.
This paper concerns with the effect of nitrogen addition to 904 L stainless steel (SS) welds on their stress corrosion cracking (SCC) behavior in high temperature (288 °C) and high pressure (1050 psi) water of high oxygen content (100 ppb) and high conductivity (2.5 μS/cm). For this study, 316 L SS base plate TIG welded with 904 L SS filler wire and with nitrogen contents of 0.027, 0.058 and 0.095 wt.% were used. Flat pin-loaded tensile specimens were fabricated from transverse welds, with the weld in the gauge length. Slow strain rate tests (SSRT) were carried out at a strain rate of 2.2 × 10−6 s−1. The study shows that the samples, when tested in air, failed at the weld fusion zone for 0.027 and 0.058 wt.% N and at the base metal for 0.095 wt.% N. In the environment, the samples failed in the base metal except the one with least nitrogen content (0.027 wt.%). With nitrogen addition, as the failure location shifted to the base alloy, the weld seemed to acquire SCC resistance and became even more resistant than the base alloy.  相似文献   

11.
The oxidation kinetics of iron below 570 °C is investigated through the dependence of the spectral emissivity on the surface oxidation state. Using the theory of radiative effects of thin films, the oxide scale thickness is obtained as a function of time. A parabolic growth has been observed in all the cases, and applying Wagner’s theory, the oxidation parabolic rate constants have been calculated at four temperatures. The temperature dependence of these results has additionally been used to obtain the activation energy of the oxidation process in iron. The parabolic rate constants and activation energy values are in good agreement with the theoretical predictions, and this suggests that the lattice diffusion mechanisms for the high temperature magnetite growth also occur until 400 °C. The experimental results are also useful to test the applicability of emissivity measurements for in situ oxidation kinetics studies in the spectral range where the scales are optically thin.  相似文献   

12.
An amorphous boron carbide (a-BC) coating was prepared by LPCVD process from BCl3-CH4-H2-Ar system. XPS result showed that the boron concentration was 15.0 at.%, and carbon was 82.0 at.%. One third of boron was distributed to a bonding with carbon and 37.0 at.% was dissolved in graphite lattice. A multiple-layered structure of CVD SiC/a-BC/SiC was coated on 3D C/SiC composites. Oxidation tests were conducted at 700, 1000, and 1200 °C in 14 vol.% H2O/8 vol.% O2/78 vol.% Ar atmosphere up to 100 h. The 3D C/SiC composites with the modified coating system had a good oxidation resistance. This resulted in the high strength retained ratio of the composites even after the oxidation.  相似文献   

13.
High strength low alloy (HSLA) steels are candidate Rockbolt materials for use as underground roof supports at Yucca Mountain nuclear waste repository. Oxidation kinetics of International Rollforms Split Set Friction Rock Stabilizers (SS46), and Swellex Mn24 steels have been determined by temperature modulated thermogravimetry at temperatures ranging between 600 and 900 °C in pure oxygen atmosphere for 100 hr. The imposed sinusoidal temperature modulations (±5 °C for a period of 1 cycle per 200 s) on the isothermal temperature did not have any noticeable effect on the weight gain characteristics during oxidation. Weight gain data on the steels indicate two distinct regions with different oxidation profiles, where a definite change in rates of oxidation is observed: a first oxidation regime where the steels followed a rate law y = kt0.40-0.63 (changing index of rate law depending upon steel and temperature) and a second stage oxidation regime that follows the parabolic law. The results of characterization of the oxide films using SEM/EDAX, X-ray diffraction and Synchrotron white beam X-ray microdiffraction are presented. The oxidation data of the steels presented here is expected to be useful for characterizing those steels for use in underground rock bolt system and as roof support for the DOE proposed Yucca Mountain Nuclear Waste Repository. To the best of our knowledge this is the first time thermogravimetric studies of this kind have been done on these steels.  相似文献   

14.
Surface oxidation of Fe-6 at.% Si alloy was investigated during annealing in ambient air of various pressures with simultaneous isothermal resistivity registrations. Measurements have been done in the temperature range 500-540 °C. Chemical and phase compositions of the samples were analyzed using X-ray photoelectron spectroscopy, conversion electron Mössbauer spectroscopy (CEMS), transmission Mössbauer spectroscopy (TMS), X-ray diffraction (XRD), and scanning electron microscopy (SEM). Phase analysis showed that during isothermal resistivity measurement in a low pressure air 100 mbar a protective film of hematite α-Fe2O3 was formed on the surface of FeSi substrate. By decreasing pressure to 10−2 mbar the time dependence of the resistivity exhibits an increase due to the transformation of hematite to magnetite Fe3O4. The activation energy for this transformation is 115 ± 5 kJ/mol. By regressive increasing the pressure back from 10−2 to 100 mbar a non-protective oxide scale of hematite + magnetite was formed. The results were interpreted in the light of the iron-oxygen phase diagram.  相似文献   

15.
The surface films formed on type 316LN stainless steels (SS) with different nitrogen contents, during potentiodynamic polarization in acidified 1 M NaCl solution, were characterized by Laser Raman Spectroscopy (LRS). LRS confirmed the presence of oxides and oxychlorides of iron and chromium, hydrated chlorides and nitrates in the film. Raman mapping showed increasing nitrate content in the film with increasing nitrogen content. The film on the uncorroded material showed the presence of chromium and molybdenum oxides. The improvement in pitting corrosion resistance of type 316LN SS with increasing nitrogen content was attributed to increased amount of nitrates in the passive film.  相似文献   

16.
The corrosion behavior at high-temperature and the aqueous corrosion behavior of sintered stainless steels manufactured from non-commercial prealloyed powder (434L with 2% Si) are studied and their results are compared with those of sintered stainless steels manufactured from commercial 434L powder, that has lower Si content. Both types of powders have been sintered in vacuum at three different temperatures, so materials with different porosity levels have been obtained. Several oxidation tests have been carried out from 700 to 1000 °C. Long-term experiments have proven the better oxidation resistance of 434L + 2% Si steels. Electrochemical measurements of the corrosion rate show a decrease on this parameter caused by the increase of Si-content on powders.  相似文献   

17.
The stress corrosion cracking (SCC) growth kinetics for a cold worked 316L stainless steel was continuously monitored in high purity water at different temperatures and dissolved oxygen (DO) levels under a K (or Kmax) of 30 MPa m0.5. The total SCC test time was more than 8000 h to make sure the steady state crack growth rate under each test condition could be reached. Crack growth rate (CGR) increases with increasing temperature in the range 110-288 °C. A typical intergranular-cracking mode is identified. Depending on the previous test condition, especially the temperature, three kinds of crack growth kinetics, i.e., increasing with testing time then becoming steady, being constant during the whole period, or decreasing with test time then becoming steady, are identified and discussed. Time-dependent and testing history-dependent crack growth modes were confirmed in two series of tests in 2 ppm DO and 7.5 ppm DO pure water. The apparent activation energies are calculated and compared with other data in different environments under different applied loading levels for understanding the cracking mechanism.  相似文献   

18.
Adherent (AR), differentiated as scraped and hit, and non-adherent (NAR) rusts formed on carbon and weathering steels exposed to chloride solutions in total immersion tests were examined by means of different techniques. The NAR for both steels is composed of lepidocrocite, the most abundant, akaganeite, and goethite, whereas the AR in both steels contains additionally a spinel phase (magnetite/maghemite), which is the most abundant. Differences in crystallographic, relative amount, physical and chemical properties of the compounds in the different rust layers on both steels are reported. For both steels around 21% of the corroded iron converts completely into adherent rust.  相似文献   

19.
The stability and compressibility of Langmuir films of dococyltriethylammonium bromide (C22TAB) and 1-octadecanol (C18OH) and their mixtures on water surfaces were first investigated. Langmuir-Blodgett films were transferred onto iron substrate. Their effect on corrosion of iron in carbon dioxide containing brine were investigated by electrochemical methods. The C18OH formed a thin homogenous film with molecular area 19.4 Å2 at 36 mN m−1 at water surface. The films of C22TAB and C22TAB/C18OH mixtures were less dense, with 31 Å2 molecular area at 36 mN m−1 at water surface. The corrosion rate of iron substrate was reduced by 95% by deposition film of C18OH, while the corrosion rate of iron was reduced by 60% for films of C22TAB and C22TAB/C18OH mixtures.  相似文献   

20.
The influence of ageing heat treatments (675 and 875 °C for 1.5 to 48 h) on the microstructure and intergranular corrosion resistance of sintered in nitrogen duplex stainless steels was investigated. The materials were obtained by sintering mixtures of austenitic AISI 316L and ferritic AISI 430L powders. Corrosion behaviour was evaluated by using electrochemical techniques. The beneficial effect of nitrogen on corrosion behaviour of solution annealed samples was established. During ageing, secondary phases were precipitated and the intergranular and transgranular corrosion resistance significantly decreased though repassivation was observed in specimens aged at 875 °C for times up to 8 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号